MATLAB神经网络优化算法MATLAB神经网络优化算法MATLAB神经网络优化算法 MATLAB神经网络优化算法MATLAB神经网络优化算法MATLAB神经网络优化算法 MATLAB神经网络优化算法MATLAB神经网络优化算法MATLAB神经网络优化算法 MATLAB神经网络优化算法MATLAB神经网络优化算法MATLAB神经网络优化算法 MATLAB神经网络优化算法MATLAB神经网络优化算法MATLAB神经网络优化算法 MATLAB神经网络优化算法MATLAB神经网络优化算法MATLAB神经网络优化算法 MATLAB神经网络优化算法MATLAB神经网络优化算法MATLAB神经网络优化算法 MATLAB神经网络优化算法MATLAB神经网络优化算法MATLAB神经网络优化算法 MATLAB神经网络优化算法MATLAB神经网络优化算法MATLAB神经网络优化算法 MATLAB神经网络优化算法MATLAB神经网络优化算法MATLAB神经网络优化算法 MATLAB神经网络优化算法MATLAB神经网络优化算法MATLAB神经网络优化算法 MATLAB神经网络优化算法MATLAB神经网络优化算
2025-11-07 16:43:45 27.49MB 神经网络 matlab
1
MOMSA(Multi-objective Mantis Search Algorithm)是一种用于解决多目标优化问题的智能算法,它是在群智能算法的研究领域中涌现出来的一项创新技术。多目标优化问题在现实世界的决策过程中非常常见,尤其是在需要同时优化两个或多个相互冲突的目标时。这类问题要求在多个目标之间找到平衡解,即所谓的Pareto最优解集。 多目标优化算法的设计和实现一直是计算智能领域的热点话题。MOMSA算法的设计灵感来自于一种名为螳螂的昆虫的生活习性,特别是在其捕食行为中的精确性和效率。这种算法通过模仿螳螂在捕食时的搜索策略来探索解空间,以此寻找满足多目标要求的优质解集。在算法中,每个个体都代表了一个潜在的解决方案,并通过群体的协同作用来优化目标。 MOMSA算法中,个体通常被赋予不同的角色和行为模式,它们在解空间中动态地调整自己的行为,以期发现全局最优或近似全局最优的Pareto前沿。算法的核心机制包括了信息共享、种群更新和环境选择等。信息共享让种群中的个体能够根据其他个体的经验来调整自己的搜索方向和位置,从而加速收敛。种群更新机制则确保了种群的多样性,防止算法过早地陷入局部最优。环境选择策略则负责在每次迭代后从当前种群中选择出表现优异的个体,以形成下一代种群。 MOMSA算法特别适合处理那些目标之间存在冲突和竞争的多目标问题,例如工程设计、生产调度、资源分配等领域。此外,算法的性能在很大程度上取决于参数的设置,如种群大小、迭代次数、信息共享的程度等,因此在实际应用中往往需要对这些参数进行细致的调整,以达到最佳的优化效果。 在实际应用中,MOMSA算法的实现需要一个有效的计算平台来支持复杂的运算和大量的迭代。Matlab作为一种广泛使用的数值计算环境,提供了强大的工具箱和便捷的编程接口,非常适合用来开发和测试多目标优化算法。Matlab的矩阵操作能力和丰富的数学函数库使得算法的编码和调试过程更加高效。 MOMSA算法的代码实现通常包括初始化种群、个体适应度评估、环境选择、种群更新等多个模块。在Matlab环境下,这些模块可以被封装在函数或脚本中,方便调用和修改。此外,Matlab的可视化功能也可以用于监控算法的运行过程和最终解集的分布情况。 MOMSA算法是一种高效且具有创新性的多目标优化算法,它结合了群智能搜索策略和Matlab强大的计算能力,为解决复杂的多目标优化问题提供了一种有效的途径。算法的设计和优化过程需要充分考虑多目标之间的权衡和种群多样性的维持,而Matlab平台的使用则大大提高了算法实现的便捷性和效果的可视化展示。
2025-11-07 12:09:03 14KB matlab 多目标优化
1
内容概要:本文详细介绍了如何使用MATLAB实现综合能源系统中的主从博弈模型。作者首先展示了主从博弈的核心迭代逻辑,包括领导者和跟随者的优化策略以及价格更新方法。文中强调了带惯性的价格更新策略和价格弹性矩阵的应用,以提高收敛速度并处理多能源品类的耦合关系。此外,还讨论了收敛性调参的方法,如使用松弛因子防止震荡,并提供了可视化策略迭代图的代码。最后,作者提出了将主从博弈模块封装成独立类的建议,以便更好地应用于实际的综合能源系统中。 适合人群:具备MATLAB编程基础并对综合能源系统和博弈论感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于研究和开发综合能源系统中涉及的多主体决策问题,尤其是处理电网公司和用户的交互决策。目标是通过主从博弈模型优化能源定价策略,实现系统效益的最大化。 其他说明:文中不仅提供了详细的代码实现,还包括了一些调试技巧和个人经验分享,帮助读者更好地理解和应用主从博弈模型。
2025-11-06 16:37:21 788KB MATLAB 优化算法 可视化
1
内容概要:本文介绍了基于多目标麋鹿群优化算法(MO【盘式制动器设计】ZDT:多目标麋鹿群优化算法(MOEHO)求解ZDT及工程应用---盘式制动器设计研究(Matlab代码实现)EHO)求解ZDT测试函数集,并将其应用于盘式制动器设计的工程实践中,相关研究通过Matlab代码实现。文中详细阐述了MOEHO算法在处理多目标优化问题上的优势,结合ZDT标准测试函数验证算法性能,并进一步将该算法用于盘式制动器的关键参数优化设计,以实现轻量化、高效制动和散热性能之间的多目标平衡。研究展示了从算法设计、仿真测试到实际工程应用的完整流程,体现了智能优化算法在机械设计领域的实用价值。; 适合人群:具备Matlab编程基础,从事机械设计、优化算法研究或智能计算相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①学习多目标优化算法(特别是MOEHO)的基本原理与实现方法;②掌握ZDT测试函数在算法性能评估中的应用;③了解如何将智能优化算法应用于实际工程设计问题(如盘式制动器设计)中的多目标权衡与参数优化; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点理解算法实现细节与工程问题的数学建模过程,同时可通过修改参数或替换优化算法进行对比实验,深化对多目标优化技术的理解与应用能力。
1
梯度下降法是一种广泛应用于机器学习、深度学习和其他优化领域的算法,其主要目的是找到一个多元函数的局部最小值,即在满足一定条件的情况下,寻找一组参数,使得函数达到最小值。该方法也被称为最速下降法,其基本思想是利用函数的梯度信息,指导搜索过程向函数值减小最快的方向进行,以期望尽快地找到函数的最小值。 在梯度下降法中,函数J(a)在某点a的梯度是一个向量,它指向函数值增长最快的方向。因此,负梯度方向就是函数值下降最快的方向。在求函数极小值时,可以通过从任意初始点出发,沿着负梯度方向走步,以最快的速度降低函数J(a)的值。这种方法被反复迭代应用,直至满足一定的停止准则,如函数值的改变量小于某个阈值或者迭代次数达到预设值。 在实施梯度下降法时,需要确定步长,即每次沿着负梯度方向走的“步子”大小。步长的选择对算法的收敛速度和稳定性有重要影响。如果步长设置得太小,算法会收敛得非常慢;而如果步长太大,则可能导致算法发散,无法收束到最小值点。此外,在迭代过程中,还需注意选取合适的初始点,以及如何确定迭代的终止条件。 在具体的迭代公式中,从初始点a出发,通过计算负梯度及其单位向量,并结合步长选择策略,可以得到新的点a'。这个过程中需要检查是否满足停止条件,比如当前点的梯度值的大小小于一个给定的阈值。如果不满足停止条件,则需要计算最佳步长,并更新当前点。这个更新过程会一直迭代进行,直到满足停止条件。最终输出结果,即为局部最小值。 总结而言,梯度下降法的核心是利用函数的梯度信息来进行优化搜索。它具有易于理解和实现的优点,但是也存在一些缺陷,例如可能会陷入局部最小而非全局最小,以及在高维空间中收敛速度可能会变慢等。梯度下降法仍然是许多优化问题中不可或缺的基础算法,其变种和改进方法也广泛应用于复杂问题的求解。
2025-10-24 11:05:15 1.92MB
1
内容概要:本文介绍了基于模型预测控制(MPC)的微电网调度优化方法,并提供了相应的Matlab代码实现。文中还涉及多种优化算法和技术在不同工程领域的应用,如改进引导滤波器、扩展卡尔曼滤波器、多目标向日葵优化算法(MOSFO)、蛇优化算法(MOSO)等,重点聚焦于微电网多目标优化调度问题。通过MPC方法对微电网中的能源进行动态预测与优化调度,提升系统运行效率与稳定性,同时应对分布式电源不确定性带来的挑战。配套代码便于读者复现与验证算法性能。; 适合人群:具备一定电力系统或自动化背景,熟悉Matlab编程,从事新能源、智能优化或微电网相关研究的科研人员及研究生;; 使用场景及目标:①实现微电网在多目标条件下的优化调度;②处理分布式电源不确定性对配电网的影响;③学习并应用MPC控制策略于实际能源系统调度中;④对比分析不同智能优化算法在路径规划、调度等问题中的表现; 阅读建议:建议结合提供的Matlab代码与网盘资料,按主题逐步实践,重点关注MPC在微电网中的建模过程与优化机制,同时可拓展至其他智能算法的应用场景。
1
基于大蔗鼠优化策略:改进的大蔗鼠优化算法IGCRA与自然觅食行为结合的元启发式算法研究,改进的IGCRA:三大策略驱动的大蔗鼠优化算法(Greater Cane Rat Algorithm with Enhanced Strategies)在CEC2005测试中的表现及展望,改进的大蔗鼠优化算法(IGCRA),三个改进策略。 快人一步发paper 2024新算法——蔗鼠优化算法Greater Cane Rat Algorithm,GCRA,蔗鼠算法(GCRA)是受蔗鼠觅食和交配行为启发而提出的一种新的元启发式算法,该成果于2024年5月23日在线发表。 GCRA优化过程的灵感来自于大蔗鼠交配季节和非交配季节的智能觅食行为。 它们是高度夜行性的动物,当它们在芦苇和草丛中觅食时,它们会留下痕迹。 这些小路随后会通向食物、水源和住所。 探索阶段是当它们离开分散在它们领地周围的不同避难所去觅食和留下踪迹时。 据推测,雄性首领保留了这些路线的知识,因此,其他老鼠根据这些信息修改它们的位置。 在cec2005测试函数进行测试,有最优值,最差值,标准差和平均值和四个指标。 由于代码本身原因F14-F
2025-10-14 10:36:41 1.06MB gulp
1
内容概要:本文介绍了一个基于VMD-NRBO-Transformer-TCN的多变量时间序列光伏功率预测项目。通过变分模态分解(VMD)对原始光伏数据进行去噪和多尺度分解,提取平稳子信号;结合Transformer的自注意力机制捕获长距离依赖关系,利用时序卷积网络(TCN)提取局部时序特征;并引入牛顿-拉夫逊优化算法(NRBO)对模型超参数进行高效优化,提升训练速度与预测精度。整体模型实现了对复杂、非线性、多变量光伏功率数据的高精度预测,具备良好的鲁棒性与稳定性。文中还提供了部分Python代码示例,涵盖VMD实现和Transformer-TCN网络结构定义。; 适合人群:具备一定机器学习与深度学习基础,从事新能源预测、时间序列建模或智能电网相关研究的研究生、科研人员及工程技术人员;熟悉Python和PyTorch框架者更佳; 使用场景及目标:①应用于光伏发电系统的短期与中期功率预测,支持电网调度与储能管理;②作为多变量时间序列预测的高级案例,用于研究VMD、Transformer、TCN融合模型的设计与优化方法;③探索NRBO等数值优化算法在深度学习超参数调优中的实际应用; 阅读建议:建议读者结合代码与模型架构图逐步理解各模块功能,重点掌握VMD信号分解、Transformer与TCN的特征融合机制以及NRBO优化策略的集成方式,可自行复现模型并在真实光伏数据集上验证性能。
2025-10-13 14:47:33 26KB Transformer
1
内容概要:本文提出一种改进的JAYA算法——CLJAYA算法,通过引入综合学习机制,包含邻域学习、历史信息学习和竞争协作学习三种策略,有效提升算法的全局搜索能力与优化性能。该算法在CEC2017标准测试集的29个复杂函数上进行了验证,实验结果表明其性能显著优于原始JAYA算法,具备更强的适应性和鲁棒性,且已通过Matlab实现并调试完成,可直接运行。 适合人群:具备一定优化算法基础,从事智能计算、工程优化或算法研究的科研人员及研究生。 使用场景及目标:①用于解决复杂工程优化问题;②作为智能优化算法的教学与研究案例;③在CEC测试函数上验证新算法性能时提供对比基准。 阅读建议:建议结合附赠的原文PDF深入理解算法设计细节,并通过提供的Matlab代码进行实验复现,便于掌握综合学习机制的具体实现方式及其对搜索性能的影响。
2025-10-12 14:37:41 451KB
1
粒子群优化算法(Particle Swarm Optimization, PSO)是由Kennedy和Eberhart于1995年提出的一种基于群体智能的优化技术。其灵感来源于对鸟群捕食行为的观察和模拟,通过模拟鸟群的社会协作来达到寻找食物最优策略的目的。粒子群优化算法特别适合于解决复杂非线性、多峰值的优化问题。 在粒子群优化算法中,每个粒子都代表解空间中的一个潜在解,而整个粒子群则是在多维空间中搜索最优解的群体。每个粒子根据自己的飞行经验(即个体认知)和群体的最佳经验(即社会行为)来动态调整自己的飞行速度和方向。粒子群优化算法的关键在于信息的社会共享,每个粒子都能记住自己曾经达到的最佳位置,即个体最佳(pbest),以及整个群体所经历的最佳位置,即全局最佳(gbest)。 PSO算法的基本步骤包括初始化粒子群体、评价每个粒子的适应度、找到个体最佳位置(pbest)以及更新全局最佳位置(gbest)。粒子的位置和速度会根据一系列公式进行更新,速度更新公式通常包含三部分:粒子先前的速度、认知部分(个体经验)和社交部分(群体经验)。其中,惯性权重、加速度常数以及随机函数等参数对于算法性能的调节起着至关重要的作用。 粒子群优化算法的优点在于其简单易行、收敛速度快,并且设置参数少,这使得它成为现代优化方法领域研究的热点之一。由于其具有较快的收敛速度和较少的参数设置,粒子群优化算法被广泛应用于工程优化、神经网络训练、机器学习以及函数优化等众多领域。 粒子群优化算法在实际应用时,需要根据具体问题设置合适的适应度函数(fitness function),用来评价每个粒子的性能,并依据性能来指导粒子更新自己的位置和速度。算法中的关键参数,如惯性权重(w)、加速度常数(c1和c2)以及速度和位置的变化范围等,需要经过仔细调整以达到最佳的优化效果。此外,算法的迭代次数也需要根据具体问题来确定。 粒子群优化算法通过模拟自然界的群体行为,提供了一种高效、易实现的全局优化策略。它以简单的算法结构、较快速的收敛速度以及良好的优化性能,在各种优化问题中获得了广泛的应用,成为了当今优化方法研究的重要分支。
2025-10-10 08:52:23 3.73MB
1