在本文中,我们描述了代表霍乱动力学的两个不同的随机微分方程。 通过将随机性引入随机性建模中的一种标准技术-参数摄动技术,将随机性引入确定性模型中,从而编制出第一条随机微分方程;并使用转移概率来编制第二条随机微分方程。 我们使用合适的Lyapunov函数和Itô公式分析随机模型。 我们陈述并证明了整体存在的条件,正解的唯一性,随机有界性,概率的整体稳定性,矩指数稳定性和几乎确定的收敛性。 我们还使用Euler-Maruyama方案进行了数值模拟,以模拟随机微分方程的样本路径。 我们的结果表明,样本路径是连续的,但不可区分(维纳过程的一个属性)。 此外,我们比较了确定性模型和随机模型的数值模拟结果。 我们发现,SIsIaR-B随机微分方程模型的样本路径在SIsIaR-B常微分方程模型的解内波动。 此外,我们使用扩展的卡尔曼滤波器来估计模型区室(状态),我们发现状态估计值适合测量结果。 还讨论了用于估计模型参数的最大似然估计方法。
1