内容概要:本文介绍了带隙基准(Bandgap Reference)电路的基本概念及其在集成电路中的重要作用,重点解析了电压模、亚阈值补偿电路、cascode结构提升PSRR,以及二级运放配合密勒电容和调零电阻的电路设计。文章提供了完整的仿真方法,包括获取经典抛物线输出、电源抑制比(PSRR)测试、环路稳定性分析和瞬态启动验证,并附有经典论文与仿真资料推荐,适合新手快速上手。 适合人群:电子工程相关专业学生、刚入行的集成电路设计工程师,具备基本电路知识、工作1-3年的研发人员。 使用场景及目标:①学习带隙基准电路的核心结构与工作原理;②掌握PSRR优化、稳定性仿真与瞬态分析等关键仿真技能;③通过提供的工艺文件(.13um)和无需版图的设计实现快速仿真验证。 阅读建议:建议结合提供的仿真参考资料和经典论文,使用主流EDA工具进行实操仿真,重点关注运放结构设计、补偿机制与环路稳定性之间的关系,强化理论与实践结合。
2025-12-29 21:48:15 633KB 仿真方法
1
利用COMSOL软件生成三维多孔介质模型的方法和技术要点。首先阐述了多孔介质的基本概念及其重要性,特别是在石油工程、环境科学、生物医学等领域的广泛应用。接着对COMSOL这款强大的工程仿真软件进行了简要概述,强调其在多学科建模和仿真的优势。随后,逐步讲解了从启动软件到最终运行仿真的一系列具体操作流程,包括创建几何体、设定材料属性、配置网格、生成多孔结构以及选择求解器等关键环节。最后展示了部分代码片段,用以辅助理解和实际操作。此外,还提及了COMSOL提供的丰富后处理工具,有助于深入分析仿真结果。 适用人群:从事相关领域研究的技术人员、高校师生及其他对多孔介质建模感兴趣的科研工作者。 使用场景及目标:适用于需要深入了解多孔介质内部结构及其流体传输特性的项目,旨在提高研究人员对该类复杂系统的认知水平,促进理论研究向实际应用转化。 其他说明:文中不仅提供了详细的步骤指导,还有助于读者掌握COMSOL软件的基础使用方法,为后续更复杂的建模任务打下坚实基础。同时鼓励读者积极尝试不同的建模思路,探索更多可能性。
2025-11-19 10:59:59 384KB
1
手性COMSOL光学仿真研究:三维能带与Q因子分析,透射谱与动量空间偏振场分布及手性CD计算探讨,手性COMSOL光学仿真技术:探究三维能带与Q因子,分析透射谱与偏振场分布的精确计算方法及手性CD的数字化应用。,手性COMSOL 光学仿真,包含三维能带,三维Q 因子,透射谱,动量空间偏振场分布,手性CD计算等。 ,手性; COMSOL 光学仿真; 三维能带; 三维Q因子; 透射谱; 偏振场分布; 手性CD计算,手性光学仿真:COMSOL三维能带与Q因子分析 在现代光学研究领域,手性光学仿真技术已经成为了探索物质手性特性的重要工具。随着计算机技术和数值模拟方法的进步,COMSOL Multiphysics这一多物理场仿真软件在手性光学仿真领域中扮演着关键角色。它能够模拟和分析复杂的光学现象,特别是在研究手性材料的光学性质时,能够为研究者提供丰富的数据和直观的物理图像。 三维能带结构是理解光子晶体、半导体等材料光学特性的基础。通过COMSOL光学仿真,研究者可以模拟材料内部的电磁波传播,分析其能带结构,并计算出对应的三维Q因子。Q因子是一个表征共振器选择性的参数,它能够反映出光子晶体中光场分布的局域化程度和模式纯度。在手性光学仿真中,Q因子的准确计算对于预测材料的光学性能至关重要。 透射谱是指在特定条件下,材料对光的透过能力随波长或频率变化的关系曲线。通过分析透射谱,研究者能够了解手性材料对不同波长光的透过性能,以及手性结构如何影响材料的光学透明度。动量空间偏振场分布则揭示了光在手性介质中传播时电场和磁场的空间分布情况。这些分布特性对于理解手性材料的光学活性、旋光性和圆二向色性等性质非常关键。 手性圆二向色性(CD)是手性物质特有的光学性质,它反映了手性物质对左旋光和右旋光吸收差异的特性。通过手性COMSOL光学仿真技术,研究者可以计算出手性材料的CD光谱,从而对其手性特性进行精确表征。这一技术在生物大分子、手性药物、手性液晶等领域有着广泛的应用前景。 本次研究中涉及的文件名称列表,包括了从不同角度对手性光学仿真技术的研究。例如,有文件深入探讨了手性结构中的光学现象,还有文件分析了手性光学仿真技术的边界和应用。更有文件聚焦于三维能带因子与透射谱、能带结构之间的关系,以及基于手性光学仿真分析光学透射谱和能带结构的研究。这些文件通过不同的研究视角,全面揭示了手性COMSOL光学仿真技术在多维度上的应用和价值。 在进行手性光学仿真时,研究者需要构建准确的物理模型,设定合理的材料参数和边界条件,通过数值计算得到仿真结果。这个过程不仅要求研究者具备扎实的理论基础,还需要熟练掌握仿真软件的操作技能。通过对比实验数据和仿真结果,可以进一步验证模型的准确性和仿真方法的有效性。 手性COMSOL光学仿真技术的研究和应用,为光学材料的设计、光学器件的优化和手性光学现象的深入理解提供了强有力的技术支持。随着仿真技术的不断发展和手性光学研究的不断深入,未来这一领域的研究有望取得更多突破性进展。
2025-11-12 22:15:15 1002KB 数据结构
1
利用COMSOL Multiphysics进行光纤布拉格光栅(FBG)仿真的方法和技术要点。首先解释了FBG的基本原理,即通过在光纤内部制造周期性折射率变化来实现特定波长光的反射。接着阐述了如何在COMSOL中构建FBG模型,包括定义折射率调制函数、选择合适的边界条件以及正确配置求解器设置。文中还提供了具体的MATLAB代码示例用于定义折射率调制函数,并强调了在设置过程中需要注意的问题,如避免将函数表达式误认为字符串、选择适当的边界条件以确保仿真准确性等。此外,作者分享了一些实用的经验技巧,比如通过调整调制深度观察反射带宽的变化,以此评估FBG的温度/应变传感性能。最后指出,虽然仿真不能完全替代实验,但它能够帮助研究人员更好地理解和优化FBG的设计。 适用人群:从事光通信领域研究的技术人员、高校相关专业师生及其他对FBG仿真感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解FBG工作机理并掌握其仿真技能的研究人员;目标是在理论基础上提高实际操作能力,为后续实验提供指导。 其他说明:文中不仅涵盖了基本概念介绍,还包括大量实操建议,对于初学者来说非常友好。同时提醒读者关注数值误差带来的影响,确保仿真结果的有效性和可靠性。
2025-11-11 14:36:42 337KB Bragg Grating
1
半桥LLC谐振变换器Matlab Simulink仿真技术研究:电压闭环PI-PI控制策略下输出12V实现软开关运行的研究与实现,基于Matlab Simulink仿真的半桥LLC谐振变换器:电压闭环PI控制实现12V输出与软开关运行,半桥LLC谐振变器,Matlab simulink仿真,电压闭环PI pi控制,输出电压12V,实现软开关运行。 ,半桥LLC谐振变换器; Matlab simulink仿真; 电压闭环PI控制; 软开关运行; 输出电压12V,Matlab仿真半桥LLC谐振变换器:实现12V软开关电压闭环控制
2025-11-07 13:28:18 2.62MB safari
1
超表面与超材料:CST仿真设计、材料选择与代码实现全解析,基于超表面与超材料的CST仿真技术研究与应用:涵盖二氧化钒、石墨烯等材料,聚焦代码与涡旋代码的全面解析,CST仿真 超表面 超表面,超材料 超表面CST设计仿真 超透镜(偏移聚焦,多点聚焦),涡旋波束,异常折射,透射反射编码分束,偏折,涡旋(偏折,分束,叠加),吸波器,极化转,电磁诱导透明,非对称传输,RCS等 材料:二氧化钒,石墨烯,狄拉克半金属钛酸锶,GST等 全套资料,录屏,案例等 聚焦代码,涡旋代码,聚焦透镜代码, CST-Matlab联合仿真代码,纯度计算代码 ,核心关键词: 1. 超表面; 超材料 2. CST仿真 3. 透射反射编码分束 4. 涡旋波束 5. 二氧化钒; 石墨烯; 狄拉克半金属钛酸锶 6. 聚焦代码; 联合仿真代码 7. 材料属性(纯度计算) 这些关键词一行中以分号隔开: 超表面;超材料;CST仿真;透射反射编码分束;涡旋波束;二氧化钒;石墨烯;狄拉克半金属钛酸锶;聚焦代码;联合仿真代码;材料属性(纯度计算) 希望符合您的要求。,《CST仿真与超表面技术:聚焦透镜与涡旋波束的全套资料与代码
2025-11-05 11:56:45 4.08MB
1
基于FPGA的OFDM通信系统在Verilog中的实现方法,涵盖IFFT/FFT核心算法、成型滤波器设计、循环前缀(CP)插入与去除、跨时钟域处理及仿真验证。通过Xilinx FFT IP核调用、MATLAB或Python生成滤波器系数、手动编写状态机控制CP操作,并结合ModelSim、Vivado和Quartus多平台仿真,系统性地展示了从模块设计到testbench搭建的全流程。文中还分享了实际开发中的典型问题与解决方案,如FFT时延特性导致的数据对齐错误、滤波器输出溢出、亚稳态处理等。 适合人群:具备FPGA开发基础、熟悉Verilog语言并有一定通信原理知识的工程师或研究生,尤其适合从事无线通信系统开发、数字信号处理实现的技术人员。 使用场景及目标:①实现OFDM系统关键模块的硬件逻辑设计;②掌握FPGA上FFT/IP核的正确配置与数据时序对齐;③构建可复用的testbench进行功能仿真与自动校验;④解决跨时钟域、饱和处理、噪声注入等工程实际问题。 阅读建议:建议结合Quartus、Vivado和ModelSim工具链进行实践,重点关注IP核时序特性、testbench中的自动比对逻辑以及信号位宽管理,避免仿真与实测结果偏差。
2025-10-28 10:46:57 541KB
1
COMSOL 6.0非线性超声仿真技术在奥氏体不锈钢应力腐蚀微裂纹检测中的应用。首先,文章阐述了非线性超声仿真的背景及其重要性,随后具体讲解了COMSOL非线性超声仿真技术的工作原理和技术特点。接着,重点讨论了奥氏体不锈钢应力腐蚀微裂纹的非线性表面波检测,包括模型搭建、参数设置、非线性表面波检测原理及仿真结果分析。最后,文章还探讨了版本低于6.0的模型无法打开的原因及解决方案,并对未来的应用前景进行了展望。 适合人群:从事材料科学研究、工程仿真技术开发的专业人士,尤其是对非线性超声仿真技术和奥氏体不锈钢应力腐蚀感兴趣的科研人员。 使用场景及目标:适用于需要进行材料性能预测和产品设计优化的研究项目,旨在提高对奥氏体不锈钢应力腐蚀微裂纹的理解和检测能力。 其他说明:文中强调了COMSOL 6.0版本的重要性和必要性,提醒使用者注意软件版本的兼容性问题。
2025-10-27 16:43:09 424KB
1
通信网络仿真技术是信息技术领域中的一个重要分支,它主要用于研究、设计和优化通信网络的性能。在实际应用中,由于通信网络的复杂性,通过实际部署和测试来评估网络性能往往成本高昂且耗时,因此仿真技术应运而生。本讲义结合C++编程语言和OMNeT++仿真框架,旨在帮助学生和专业人士深入理解通信网络的运作机制,并能实际动手进行仿真模拟。 OMNeT++是一个开源的、基于事件驱动的离散事件模拟框架,专为网络和分布式系统的建模与仿真设计。它提供了一个强大的可视化开发环境,支持模块化、组件化的编程方式,使得用户可以构建复杂的通信网络模型。OMNeT++采用C++作为编程语言,允许开发者利用面向对象的特性来设计和实现网络模型,增强了代码的复用性和可扩展性。 在《通信网络仿真技术》的课程中,学生将学习到以下关键知识点: 1. **通信网络基础**:课程会介绍通信网络的基本概念,如网络层次结构(OSI模型或TCP/IP模型)、数据传输协议(如TCP、UDP)、路由算法以及拥塞控制机制等。 2. **仿真原理与方法**:理解仿真与模拟的区别,掌握离散事件仿真模型的构建,包括事件调度、时间推进和状态转移等核心概念。 3. **OMNeT++框架**:详细讲解OMNeT++的安装、配置,以及如何使用IDE进行项目创建和管理。了解NED(Network Description Language)和C++的结合,用于定义网络拓扑和组件行为。 4. **C++编程基础**:复习C++语言基础,包括类、对象、继承、多态等面向对象编程概念,为编写OMNeT++仿真模型打下基础。 5. **OMNeT++组件与网络构建**:学习如何定义和实现OMNeT++中的节点、链路、协议栈等组件,以及如何通过NED文件构建网络拓扑。 6. **仿真模型设计**:学习如何根据实际通信网络的需求,设计和实现相应的仿真模型,如无线通信模型、QoS模型、物联网通信模型等。 7. **仿真结果分析**:掌握如何运行仿真、收集数据,并使用OMNeT++的内置统计工具和第三方工具(如Veins、Inet)进行结果分析和可视化。 8. **案例研究**:通过实际的通信网络案例,如局域网、城域网、互联网或者未来网络架构,进行仿真模型的设计与实现,以加深对通信网络仿真的理解。 9. **优化与改进**:讨论如何通过调整参数、优化算法等方式改进仿真模型,以更准确地预测网络性能。 通过这门课程的学习,学生不仅能够掌握通信网络的基本原理,还能够具备使用OMNeT++进行网络仿真的实践能力,这对于在学术研究、工程设计或者网络规划等领域都是极其有价值的。
2025-10-26 21:12:53 133.79MB omnet
1
电力电子仿真技术:DC-DC变换器与多种控制策略,移相全桥及三相PWM整流器的Simulink模拟应用,基于电力电子Matlab/Simulink仿真的多种变换器及复杂控制策略研究,电力电子Matlab仿真电力电子Simulink仿真 高频电电 力电子仿真Simulink (1)DC-DC仿真,buck,boost,Cuk,交错并联,PFC,APFC,LLC谐振双向,CLLC谐振双向,正激,反激,半桥和全桥等。 对应的控制方法主要有电压型单闭环控制,电压电流双闭环控制,平均电流控制,峰值电流控制,滞环控制,bangbang控制等。 (2)大功率的移相全桥,LLC谐振变器,无线电能传输,车载充电机,DAB,双有源桥。 控制方式有变频控制PFM,双闭环,移相控制,双移相控制,多移相控制。 (3)单相、三相PWM整流器、逆变器,双向变器。 锁相环,混合微电网,MPPT最大功率点跟踪,光伏并网系统仿真等。 三电平、五电平及多电平变器,多载波调制,单极性,双极性,单极倍频调制,SPWM, SVPWM等调制方式。 dq解耦,坐标系变等等。 控制方式常规双闭环PI控制,直接功率控制,模糊PI,重复
2025-10-24 14:51:35 2.89MB
1