旨在为机器学习和深度学习应用提供高质量的真实人脸和AI生成的人脸图像。这个数据集对于开发和测试能够区分真实和AI生成面部图像的分类器至关重要,适用于深度伪造检测、图像真实性验证和面部图像分析等任务。 该数据集精心策划,支持前沿研究和应用,包含了从多种“灵感”源(如绘画、绘图、3D模型、文本到图像生成器等)生成的图像,并通过类似StyleGAN2潜在空间编码和微调的过程,将这些图像转化为照片级真实的面部图像。数据集还包含了面部标志点(扩展的110个标志点集)和面部解析语义分割图。提供了一个示例脚本(explore_dataset.py),展示了如何在数据集中访问标志点、分割图,以及如何使用CLIP图像/文本特征向量进行文本搜索,并进行一些探索性分析。 数据集的四个部分总共包含了约425,000张高质量和策划的合成面部图像,这些图像没有隐私问题或许可证问题。这个数据集在身份、种族、年龄、姿势、表情、光照条件、发型、发色等方面具有高度的多样性。它缺乏配饰(如帽子或耳机)以及各种珠宝的多样性,并且除了头发遮挡前额、耳朵和偶尔眼睛的自我遮挡外,不包含任何遮挡。
2025-05-28 10:52:14 115.71MB 机器学习 图像识别
1
18 人的 1800 多张名人面孔图像! 该数据集包含 18 位好莱坞名人的图像,每位名人有 100 张图片。该数据集中的人物包括: 安吉丽娜朱莉 布拉德·皮特 丹泽尔华盛顿 休·杰克曼 詹妮弗·劳伦斯 约翰尼·德普 凯特·温斯莱特 莱昂纳多·迪卡普里奥 梅根·福克斯 娜塔莉波特曼 妮可基德曼 小罗伯特·唐尼 桑德拉·布洛克 斯嘉丽约翰逊 汤姆·克鲁斯 汤姆·汉克斯 威尔·史密斯 在当今信息爆炸的时代,人脸识别技术作为人工智能领域的一个重要分支,已经广泛应用于安全验证、身份识别等多个领域。而名人人脸图像数据集的下载,对于研发和测试人脸识别系统尤为重要。本数据集精心选取了18位好莱坞知名人士的图片,共计1800多张,每张图片均代表了特定个体的独特面部特征,为研究提供了丰富的资源。 该数据集中的名人包括了安吉丽娜·朱莉、布拉德·皮特、丹泽尔·华盛顿等国际知名电影明星,这些名人不仅在全球范围内拥有庞大的粉丝基础,而且其面部特征经过多部作品的曝光后,也为大众所熟悉。数据集的构建考虑到了不同性别、年龄、种族等因素,更全面地反映了人脸数据的多样性,增强了人脸识别算法在实际应用中的适应性和准确性。 在数据集的使用上,开发者和研究者可以根据自己的需求,进行人脸检测、特征提取、面部表情分析等一系列工作。例如,通过分析安吉丽娜·朱莉的照片,可以探索与性别相关的面部特征差异;布拉德·皮特的图片则可能用于研究不同年龄段面部特征的变化等。此外,数据集的多样化也为研究不同种族间的面部识别提供了可能。 数据集的高质量图片对于人脸图像识别算法的训练和测试至关重要。在机器学习和深度学习领域,训练数据的质量和数量直接影响着模型的性能。该数据集提供的每张图片都具有较高的分辨率和清晰度,能够为算法训练提供足够的细节信息,从而提高识别的准确性。同时,100张同一人物的图片也为测试算法的稳定性提供了充足的样本。 在技术实现方面,利用该数据集进行人脸识别的研究可以涵盖多个方面,包括但不限于图像预处理、特征提取、模式识别、深度学习模型的构建和优化等。开发者可以结合数据集的特点,选择合适的机器学习算法进行模型训练。例如,采用卷积神经网络(CNN)进行图像的特征提取和分类任务,利用支持向量机(SVM)进行面部特征的分类识别,或者运用生成对抗网络(GAN)生成更为逼真的面部图像。 值得注意的是,虽然人脸识别技术在提高安全性方面具有不可估量的潜力,但其隐私问题也受到了广泛关注。在使用名人人脸图像数据集时,研究者应严格遵守相关法律法规,尊重名人的肖像权,不将数据用于任何非法用途。 名人人脸图像数据集是人脸识别研究领域的重要资源,它不仅包含了丰富多样的人脸图像,还为算法的研究与开发提供了强大的支持。随着人脸识别技术的不断进步,相信未来会有更多精准、高效的应用落地,为人们的生活带来便利。
2025-04-23 15:17:45 52.9MB 人脸数据集 人脸图像
1
MORPH-II数据集由16至77岁人群的照片组成,每个人平均有4张照片。这是公开的最大的纵向人脸图像数据集。学术版包含了大约55000张5年拍摄的图像。MORPH-II数据集收集了55134张头像,其中提供了有价值的纵向数据。
2022-10-24 21:05:12 564.28MB 计算机视觉 年龄估计 图像处理 数据集
1
CMU Frontal Face Images Dataset 是一个用于人脸识别和身份鉴定的图像数据集,包含 511 个闭合的人脸图像,其中有 130 个是正面的人脸图像,所有图片均为黑白的 GIF 格式。 CMU – MIT Dataset 由卡内基·梅隆大学和麻省理工学院于 2016 年联合发布。
2022-07-13 11:05:09 45.1MB 数据集
Caltech 10k Web Faces 是一个人脸图像数据,包含 10524张 人脸图像和标注信息, 标注眼睛、鼻子和嘴巴的位置,来自Google图像搜索后的人工标注。
2021-12-19 17:30:35 130.29MB 人脸检测 人脸识别 机器视觉
1
人脸图像数据 GA/T922.2-2011国标文档
2021-10-19 14:15:21 1022KB GA/T922.2-2011 人脸图像数据 T922.2-2011
1
Caltech 10k Web Faces 是一个人脸图像数据,包含 10524张 人脸图像和标注信息, 标注眼睛、鼻子和嘴巴的位置,来自Google图像搜索后的人工标注。
2021-08-30 09:29:20 130.29MB 人脸检测 人脸识别 机器视觉
1
完整的orl人脸数据集,基础的图像数据集,适合新手入门,很好用,用于分类任务,已经被下载过很多次了,有问题可以私信
2019-12-21 20:07:42 3.74MB 人脸数据集 orl 人脸识别
1