使用智能手机识别人类活动源码
2021-11-19 13:10:44 565KB 智能手机 人类活动源码
2018年11月 使用智能手机数据集的人类活动识别 资料库概述: 该项目旨在建立一个模型,该模型根据智能手机的Sensor数据预测诸如步行,上楼,下楼,坐着,站着和躺下等人类活动。 仓库有3个ipython笔记本1 :数据预处理和探索性数据分析2 :具有特征数据的机器学习模型3 :基于原始时间序列数据的LSTM模型所有代码都是用python 3编写的依赖 张量流 凯拉斯 麻木 大熊猫 matplotlib 海生的 斯克莱恩 itertools 约会时间 介绍: 每个现代的智能手机都有许多。 我们对加速度传感器和陀螺仪这两种传感器感兴趣。 借助传感器记录数据这是一个6类分类问题,因为我们有6个活动要检测。 该项目分为两部分,第一部分训练,调整和比较Logistic回归,线性支持向量分类器,RBF(径向基函数)SVM分类器,决策树,随机森林,梯度提升决策树模型,并使用领域专家提
2021-11-13 08:29:30 84.62MB JupyterNotebook
1
使用自我注意从可穿戴传感器数据中识别人类活动 Tensorflow 2.x实施“使用自注意力从可穿戴传感器数据中识别人类活动”, ,作者: 和M. Tanjid Hasan Tonmoy等。 [ ] [ ] **此存储库正在维护中。 最终版本的代码将很快发布** 安装 要在python3环境中安装依赖项,请运行: pip install -r requirements.txt 数据集下载 要下载数据集并将其放置在data目录下以进行模型训练和推理, dataset_download.py使用以下命令运行脚本dataset_download.py : python dataset_download.py --dataset DATASET --unzip 此处,此项目的命令行参数DATASET中的数据集名称如下: DATASET = pamap2 / opp / uschad
1