程序流程 1.将数据进行预处理。 2.通过一对一方法将45类训练样本((0,1),(0,2),…(1,2)…(2,3))送入交叉验证法,训练算法为smo 3.得出45个模型,测试时在利用投票法判定 数据结构 '''*************************************************************** * @Fun_Name : judgeStruct: * @Function : 存放训练后的分类器参数 * @Parameter : * @Return : * @Creed : Talk is cheap
2021-11-13 12:41:31 80KB IS 交叉 交叉验证
1
在机器学习中,我们经常在训练集上训练模型,在测试集上测试模型。最终的目标是希望我们的模型在测试集上有最好的表现。 但是,我们往往只有一个包含m个观测的数据集D,我们既要用它进行训练,又要对它进行测试。此时,我们就需要对数据集D进行划分。 对于数据集D的划分,我们尽量需要满足三个要求: 训练集样本量充足 训练模型时的计算量可以忍受 不同的划分方式会得出不同的训练集和测试集,从而得出不同的结果,我们需要消除这种影响 我们将分别介绍留出法、交叉验证法,以及各自的python实现。自助法(bootstrapping)将在下篇中加以介绍。 1.留出法 留出法是最常用最直接最简单的方法,它直
2021-11-05 15:41:43 119KB python python算法 test
1
学习器在测试集上的误差我们通常称作“泛化误差”。要想得到“泛化误差”首先得将数据集划分为训练集和测试集。那么怎么划分呢?常用的方法有两种,k折交叉验证法和自助法。介绍这两种方法的资料有很多。下面是k折交叉验证法的python实现。 ##一个简单的2折交叉验证 from sklearn.model_selection import KFold import numpy as np X=np.array([[1,2],[3,4],[1,3],[3,5]]) Y=np.array([1,2,3,4]) KF=KFold(n_splits=2) #建立4折交叉验证方法 查一下KFold函数的参数
2021-10-10 16:37:35 40KB python test 交叉
1
主要介绍了Python实现K折交叉验证法的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
1
主要介绍了详解python实现交叉验证法与留出法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2021-03-10 17:05:25 115KB python 交叉验证法 python 留出法
1