BUSI(Breast Ultrasound Image)是一个包含乳腺超声图像的分类和分割数据集。该数据集包括了 2018 年收集的乳腺超声波图像,涵盖了 25 至 75 岁的 600 名女性患者。数据集由 780 张图像组成,每张图像的平均大小为 500*500 像素。这些图像被划分为三类:正常、良性和恶性。而在良性和恶性乳腺超声图像中,还包含了对应胸部肿瘤的详细分割标注,为深入研究和精准诊断提供了关键信息。这份数据集不仅为乳腺癌研究提供了丰富的图像资源和宝贵支持。 乳腺超声成像技术是一种常用的乳腺疾病检查方法,它通过超声波来获取乳腺组织的图像,具有无创、无痛、操作简便、成本低等特点,是早期发现乳腺病变的重要手段之一。BUSI乳腺超声图像数据集是专门为乳腺病变的分类和分割研究而构建的,对于医疗影像学以及人工智能辅助诊断领域具有重要价值。 数据集中的图像来自2018年的收集,涵盖了广泛年龄段的女性患者,从25岁至75岁不等。由于乳腺疾病的发病与年龄有一定关联,不同年龄段的女性患者可能表现出不同的超声图像特征,这对于研究乳腺病变的年龄分布特征、不同年龄段的发病风险评估等都提供了宝贵的信息。 数据集包含了780张高分辨率的超声图像,每张图像的平均大小为500x500像素,这样的分辨率足以捕捉乳腺组织的细微结构,对于病变区域的辨识和分析至关重要。图像被分为三个主要类别:正常、良性以及恶性。这种分类对于医疗专业人员在临床中进行快速准确的诊断提供了直接帮助,同时也为计算机辅助诊断(CAD)系统的学习与验证提供了基础数据。 在良性与恶性图像中,数据集还包含了详细的肿瘤分割标注,标注区域通常指的是病变的轮廓或边缘,这对于图像分割、计算机视觉识别等任务至关重要。通过这些详细标注,研究人员和工程师可以训练和测试更为精准的图像分割算法,识别和量化肿瘤区域,进而辅助医生在制定治疗方案时做出更为科学的决策。 除了图像本身,该数据集对于深入研究乳腺癌的潜在病理机制、影像学特征与病理诊断之间的联系提供了坚实的数据支撑。医生和科研人员可以利用这些数据进行模式识别、图像分析,以及探索可能存在的影像学标志物,这些标志物可能成为未来诊断乳腺癌的新途径。 此外,BUSI乳腺超声图像数据集还支持跨学科合作,如医学影像学、数据科学和人工智能领域的结合,有助于推动医疗影像分析技术的进步。通过构建和应用深度学习模型,可以实现从传统影像学检查到人工智能辅助诊断的转变,提高乳腺癌的筛查和诊断效率。 BUSI乳腺超声图像数据集不仅为乳腺癌的基础和临床研究提供了丰富的图像资源,也为开发和验证智能化的医学影像分析工具提供了重要的数据支撑,具有较高的应用价值和科研意义。
2025-04-21 11:35:32 159.94MB 医学图像数据集
1
乳腺肿瘤计算机辅助诊断(CAD)系统在医学检测和诊断中的应用日益重要。为了区分核磁共振图像(MRI)中肿瘤与非肿瘤,利用深度学习和迁移学习方法,设计了一种新型乳腺肿瘤CAD系统:1)对数据集进行不平衡处理和数据增强;2)在MRI数据集上,利用卷积神经网络(CNN)提取CNN特征,并利用相同的支持向量机分类器,计算每层CNN的特征图的分类F1分数,选取分类性能最高的一层作为微调节点,其后维度较低层为连接新网络节点;3)在选取的网络接入节点,连接新设计的两层全连接层组成新的网络,利用迁移学习,对新网络载入权重;4)采用固定微调节点前的网络层不可训练,其余层可训练的方式微调。分别基于深度卷积网络(VGG16)、Inception V3、深度残差网络(ResNet50)构建的CAD系统,性能均高于主流的CAD系统,其中基于VGG16和ResNet50搭建的系统性能突出,且二次迁移可以提高VGG16系统性能。
1
小鼠乳腺中Heregulin-α的表达与作用,耿丽晶,李庆章,Heregulins(HRGs)是HRG基因所编码的一个多肽因子。此基因能够通过选择性RNA剪切形成多种同行异构体。在正常乳腺中,只有HRG-α表达。HRG-
2024-02-29 21:22:53 335KB 首发论文
1
131I-Herceptin对乳腺癌细胞株的体外杀伤效应,林菁,,【目的】研究同位素131I标记Herceptin对Her-2表达阳性乳腺癌细胞的特异性杀伤作用。为进一步放射免疫导向治疗奠定基础。【方法】应用IOD
2024-01-09 13:57:33 413KB 首发论文
1
基于图论的乳腺肿瘤超声图像的分割和识别方法.pdf
2023-02-20 21:44:14 2.16MB 图论 图像算法 医疗 分割
1
经过修改的AAPM TG18图像 乳房X线照片DICOM图像 乳房摄影图像的处理方式与其他图像的图像不同图像
2023-01-23 00:22:01 722KB DICOM 医疗 乳腺 图片
1
乳腺浸润性导管癌分级的组织病理学图像集,共906张图片,显微镜图像 乳腺浸润性导管癌分级的组织病理学图像集,共906张图片,显微镜图像 乳腺浸润性导管癌分级的组织病理学图像集,共906张图片,显微镜图像
2022-12-18 18:28:36 808.35MB 乳腺 导管癌 病理学 图像
意大利 IAE 生产的乳腺X射线机球管,性能手册,技术文档,球管型号:XM65T,为医疗设备技术人员提供参考。
2022-12-10 11:42:19 189KB IAE Tube Mammography 球管
1
MATLAB源程序21 LVQ神经网络的分类——乳腺肿瘤诊断.zip
2022-11-18 16:27:36 91KB MATLAB 神经网络 智能算法
逻辑回归预测良性和恶性乳腺肿瘤实现二分类(使用 scikit-learn 和 XGBoost 两种方式),可扩展应用到小样本数据的故障诊断领域二分类问题 # 使用逻辑回归预测乳腺肿瘤是良性的还是恶性的 # 数据集为乳腺癌数据集,通过细胞核的相关特征来预测乳腺肿瘤为良性/恶性,这是一个非常著名的二分类数据集 # 数据集包含569个样本,其中有212个恶性肿瘤样本,357个良性肿瘤样本 # 共有32个字段,字段1为ID,字段2为label,其他30个字段为细胞核的相关特征 # scikit-learn实现逻辑回归 # XGBoost 实现逻辑回归 # XGBoost在预测结果上和scikit-learn有些差别,XGBoost的预测结果是概率,而scikit-learn的预测结果是0或1的分类,需要用户自己对其进行转化,程序能够实现scikit-learn 和XGBoost的概率输出和0或1分类输出 # 使用评估指标对分类和预测结果进行评估, 实现scikit-learn 和 XGBoost 两种逻辑回归方式对比分析
1