SIFRank_zh
这是我们论文的相关代码原文是在对英文关键短语进行抽取,这里迁移到中文上,部分管道进行了改动英文原版在。。
版本介绍
2020/03 / 03——最初最初版本本版本中只包含了最基本的功能,部分细节还有待优化和扩展。
核心算法
预训练模型ELMo +句向量模型SIF
词向量ELMo优势:1)通过大规模预训练,较早的TFIDF,TextRank等基于统计和图的具有更多的语义信息; 2)ELMo是动态的,可以改善一词多义问题; 3)ELMo通过Char -CNN编码,对生隐词非常友好; 4)不同层的ELMo可以捕捉不同层次的信息
句子矢量SIF优势:1)根据词频对词向量进行平滑逆频率变换,能更好地捕捉句子的中心话题; 2)更好地过滤通用词
最终关键焦点识别
首先对句子进行分词和词性标注,再利用正则表达式确定确定名词短语(例如:形容词+名词),将名词作为前缀关键字
最终关键利率
1