文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 从隐写术到编码转换,从音频隐写到文件结构分析,CTF-Misc 教会你用技术的眼睛发现数据中的「彩蛋」。掌握 Stegsolve、CyberChef、Audacity 等工具,合法破解摩斯密码、二维码、LSB 隐写,在虚拟战场中提升网络安全意识与技术能力。记住:所有技术仅用于学习与竞赛!
2025-12-04 15:07:14 4.88MB
1
西门子Smart 200系列双轴卷取分切机PLC与触摸屏程序,张力控制算法及设备电路图全套,西门子Smart 200系列PLC与触摸屏双轴卷取分切机程序,内含张力控制计算与梯度算法,附完整注释与设备图纸,双轴卷取分切机程序,PLC和触摸屏使用西门子smart200系列。 前后卷取双轴张力控制计算。 利用变频器模拟量输出控制张力。 卷取版型较好。 内部张力梯度算法理解后可用于恒张力卷取设备。 程序有完整注释,完整的设备图纸,方便理解阅读。 只包含PLC和触摸屏程序以及设备电路图 ,核心关键词:双轴卷取分切机程序; PLC; 触摸屏; 西门子smart200系列; 前后卷取双轴张力控制计算; 变频器模拟量输出控制张力; 卷取版型; 内部张力梯度算法; 程序注释; 设备图纸; 设备电路图。,西门子Smart200系列双轴卷取分切机程序:张力控制与变频模拟化操作指南
2025-12-04 13:02:00 10.47MB istio
1
利用Lyapunov理论研究了鲁棒H∞滤波问题。对所有的时变不确定性,设计了一个稳定的滤波器使滤波误差满足指定的H∞性能。为了简化问题的推导过程,引入了辅助系统,并给出了滤波器存在的充分且必要条件。通过矩阵变换得到了设计滤波器的LMI方法,利用LMI工具箱可以方便地得到滤波器的表达形式。最后,数值算例说明了所设计方法的有效性和可行性。
2025-12-04 11:58:49 2.96MB 自然科学 论文
1
三维地震资料空间"立体"解释技术已经发展很多年了,取得了丰富的地质成果,但直到目前断层面解释仍然存在很大的主观性。从蚂蚁体自动追踪技术的原理、流程以及参数设定及其意义等方面介绍了三维地震勘探自动构造解释模块中的"蚂蚁"追踪技术,运用该技术对金庄煤业北二盘区构造进行探测,相比传统技术能够发现更多的小型断裂构造及断裂异常,为矿井的设计开采提供了更为精细的参考信息。
1
内容概要:本文详细介绍了500kW储能变流器(PCS)采用T型三电平架构的设计与实现。首先探讨了T型三电平的硬件架构特点,包括IGBT模块的选择与布局、直流支撑电容的配置以及寄生电感的控制。接着深入解析了控制算法,尤其是SVPWM算法和中点电位平衡控制算法的具体实现及其优化方法。此外,还讨论了驱动电路设计的关键技术和调试过程中遇到的问题及解决方案,如米勒钳位功能的应用、软启动策略和散热设计的最佳实践。最后分享了一些实际应用中的调试经验和故障排除技巧。 适合人群:从事电力电子、储能系统设计与开发的技术人员,尤其是对T型三电平架构感兴趣的工程师。 使用场景及目标:帮助读者深入了解500kW储能变流器T型三电平架构的工作原理和技术细节,掌握相关硬件设计、控制算法实现及驱动电路优化的方法,提高实际项目的成功率。 其他说明:文中提供了大量实测数据和具体的代码片段,有助于读者更好地理解和应用所介绍的技术。同时,通过多个实际案例展示了该架构在不同应用场景下的表现,为后续研究和开发提供了宝贵的参考资料。
2025-12-03 15:41:53 3.31MB
1
基于TD3强化学习算法解决四轴飞行器悬浮任务
2025-12-02 23:55:55 10.75MB 强化学习 ddpg
1
在电赛的众多竞赛题目中,C题通常是针对编程和算法能力的考验。2025年电赛C题的要求是开发一套能够在树莓派上运行的代码,这项挑战强调了软件与硬件结合的实战能力,特别是使用OpenCV库进行图像处理。OpenCV是一个开源的计算机视觉和机器学习软件库,它拥有大量的图像处理功能,非常适合用于处理视觉相关的问题,如目标检测与测距算法。 目标检测是计算机视觉领域的一个核心问题,它涉及到识别图像中的特定物体,并确定其位置的过程。在树莓派上实现目标检测功能,通常需要先对树莓派进行适当的配置,比如安装操作系统、安装必要的软件库等。在安装好OpenCV库之后,就可以开始编写目标检测的相关代码了。目标检测的算法多种多样,包括但不限于基于深度学习的方法、传统的机器学习方法以及基于图像处理的传统方法。 测距算法是目标检测中不可或缺的一部分,尤其是在需要计算物体距离的情况下。测距算法可以是基于几何关系的简单三角测量,也可以是基于深度学习的复杂模型。在树莓派上实现测距算法,通常需要考虑硬件能力的限制,选择合适的算法以确保在较低的计算能力下也能有较好的性能。 PnpSolution.py和shapeDetection.py这两个文件名暗示了代码的功能。PnpSolution.py很可能是指解决透视-n点问题(Perspective-n-Point, PnP)的解决方案。PnP问题是计算机视觉中的一个经典问题,它指的是根据已知的相机内部参数和从不同角度拍摄到物体的多个图像,来计算相机相对于物体的位置和方向。这在机器视觉定位和地图构建中十分关键。shapeDetection.py则可能包含了形状检测算法,用于识别和测量图像中的不同形状。例如,它可以用于识别矩形、圆形等基本几何形状,或者更加复杂的自定义形状。 结合OpenCV库,这两个Python脚本文件能够提供一个完整的解决方案,从捕获图像,到处理图像,再到识别和测量目标,最终计算目标与相机的距离。这一系列操作在机器视觉应用中非常常见,如自动化监控、机器人导航、增强现实等。在树莓派这样的嵌入式平台上实现这样的功能,不仅能够锻炼参赛者的编程和问题解决能力,也能够提供实际应用中的宝贵经验。 树莓派是一种小型单板计算机,具有体积小、成本低、功能全面的特点,非常适合用于教育和DIY项目。结合OpenCV的视觉处理能力,树莓派在各种视觉检测和测量项目中有着广泛的应用前景。比如,可以用于自动识别生产线上的零件、检测农作物的生长状况、甚至是应用于智能交通系统中识别车辆型号和车牌等。 由于参赛作品需要在树莓派上运行,因此代码的优化也至关重要。这意味着算法不仅要准确高效,还要能够适应树莓派相对有限的计算资源。在编写代码时,参赛者需要仔细考虑算法的选择和优化,确保程序能够在树莓派上流畅地运行。 这套代码不仅仅是一个简单的代码库,它代表了对计算机视觉技术深入理解和实际应用的能力。通过这样的项目,参赛者能够深入学习OpenCV库的使用,提高编程水平,同时也能够了解到如何将理论应用于实践,解决实际问题。
2025-12-02 23:04:02 6KB
1
**BP神经网络算法详解** BP(Backpropagation)神经网络是一种经典的监督学习模型,主要用于解决非线性可分的问题,特别是在分类和回归任务中。基于PyTorch实现的BP神经网络,利用其强大的自动梯度计算功能,可以更加便捷地进行神经网络的训练。 **一、BP神经网络结构** BP神经网络由输入层、隐藏层和输出层构成。输入层接收原始数据,隐藏层负责数据的转换和特征提取,输出层则生成最终的预测结果。每个神经元包含一个激活函数,如sigmoid或ReLU,用于引入非线性特性。 **二、PyTorch框架介绍** PyTorch是Facebook开源的一个深度学习框架,它的主要特点是动态图机制,这使得模型构建和调试更为灵活。此外,PyTorch提供了Tensor库,用于处理数值计算,并且有自动求梯度的功能,这对于BP神经网络的学习过程至关重要。 **三、BP神经网络训练过程** 1. **前向传播**:输入数据通过网络,经过各层神经元的线性变换和激活函数的非线性处理,得到输出。 2. **误差计算**:使用损失函数(如均方误差MSE)来衡量预测值与真实值之间的差距。 3. **反向传播**:根据链式法则,从输出层向输入层逐层计算梯度,更新权重和偏置,以减小损失。 4. **优化器**:通常使用梯度下降法(GD)或其变种如随机梯度下降(SGD)、Adam等,按照梯度方向调整权重,完成一轮迭代。 5. **训练循环**:以上步骤在多轮迭代中重复,直到模型达到预设的停止条件,如训练次数、损失阈值或验证集性能不再提升。 **四、回归数据集** 在本例中,标签为“回归数据集”,意味着BP神经网络用于解决连续数值预测问题。常见的回归数据集有波士顿房价数据集、电力消耗数据集等。在训练过程中,需要选择合适的损失函数,如均方误差(MSE),并关注模型的拟合程度和过拟合风险。 **五、PyTorch实现的BP神经网络代码** 一个简单的BP神经网络模型在PyTorch中的实现可能包括以下步骤: 1. 定义模型结构,包括输入层、隐藏层和输出层的神经元数量。 2. 初始化权重和偏置,通常使用正态分布或均匀分布。 3. 编写前向传播函数,结合线性变换和激活函数。 4. 定义损失函数,如`nn.MSELoss`。 5. 选择优化器,如`optim.SGD`或`optim.Adam`。 6. 在训练集上进行多轮迭代,每次迭代包括前向传播、误差计算、反向传播和权重更新。 7. 在验证集上评估模型性能,决定是否保存当前模型。 **六、BPNN文件** 压缩包中的"BPNN"可能是包含上述步骤的Python代码文件,它实现了基于PyTorch的BP神经网络模型。具体代码细节会涉及到网络架构定义、数据加载、训练和测试等部分。 BP神经网络是一种广泛应用于预测问题的模型,通过PyTorch可以方便地构建和训练。理解模型的工作原理、PyTorch的使用以及如何处理回归数据集,对于深入学习和实践具有重要意义。
2025-12-02 15:07:45 33KB 回归数据集
1
内容概要:本文详细探讨了基于金属纳米孔阵列的宽带全息超表面技术,重点介绍了其单元结构仿真、几何相位与偏振转换效率的关系、全息相位的GS算法迭代计算方法以及标量衍射计算重现全息的方法。通过FDTD仿真,研究了金属纳米孔在不同转角下的电磁场分布及其对几何相位的影响。利用GS算法优化全息相位分布,实现了远场全息图像的最佳效果。此外,还通过标量衍射理论计算得到了全息图像的复振幅分布,并将其应用于实际光场分布的重现。最后,通过对超表面模型的建模和远场全息显示计算,验证了模型和算法的有效性。 适合人群:光学工程、物理电子学及相关领域的研究人员和技术人员,尤其是对全息技术和超表面感兴趣的学者。 使用场景及目标:适用于希望深入了解全息超表面技术的研究人员,旨在帮助他们掌握FDTD仿真、GS算法优化及标量衍射计算的具体应用,以便于开展相关实验和理论研究。 其他说明:文中提供了详细的FDTD建模脚本、MATLAB代码及Word教程,便于读者复现实验并深入理解宽带全息超表面的设计原理和GS算法的迭代过程。
2025-12-01 23:06:08 1.46MB
1
“基于金属纳米孔阵列的超表面全息显示技术研究:FDTD仿真与GS算法优化设计”,宽带全息超表面模型 金属纳米孔 fdtd仿真 复现lunwen:2018年博士lunwen:基于纳米孔阵列超表面的全息显示技术研究 lunwen介绍:单元结构为金属纳米孔阵列,通过调整纳米孔的转角调控几何相位,全息的计算由标量衍射理论实现,通过全息GS算法优化得到远场全息图像; 案例内容:主要包括金属纳米孔的单元结构仿真、几何相位和偏振转效率与转角的关系,全息相位的GS算法迭代计算方法,标量衍射计算重现全息的方法,以及超表面的模型建模和远场全息显示计算; 案例包括fdtd模型、fdtd建模脚本、Matlab计算相位GS算法的代码和标量衍射计算的代码,以及模型仿真复现结果,和一份word教程,宽带全息超表面的设计原理和GS算法的迭代过程具有可拓展性,可用于任意全息计算; ,关键词:宽带全息超表面模型; 金属纳米孔; fdtd仿真; 纳米孔阵列超表面; 全息显示技术; 标量衍射理论; GS算法迭代计算; 几何相位; 偏振转换效率; 超表面模型建模; 远场全息图像复现; fdtd模型; Matlab计算相位代
2025-12-01 23:05:16 1.49MB 数据结构
1