内容概要:本文详细介绍了利用MATLAB进行四相交错并联同步整流Buck变换器的设计与仿真,旨在实现从12V直流输入转换为1V/100A低压大电流输出的同时确保单相电流均衡。文中首先计算了关键参数如电感值,并选择了合适的磁元件,接着构建了MATLAB仿真模型,实现了四路PWM信号的相位差设置以及PI控制器用于均流控制。最终,仿真结果显示输出电压纹波仅为3mVpp,稳态效率达到98.7%,瞬态响应良好。 适合人群:从事电力电子设计的研究人员和技术工程师,尤其是对低压大电流电源设计感兴趣的从业者。 使用场景及目标:适用于需要将较高电压转换成稳定低压大电流输出的应用场合,如服务器电源供应系统等。目标在于提高电源转换效率,减少输出波动,确保多相电流均匀分配。 其他说明:虽然仿真结果非常理想,但在实际硬件设计过程中需要注意PCB布局带来的寄生效应影响,避免因走线不对称等因素导致性能下降。
2025-12-11 16:10:58 1.09MB
1
四相交错并联同步整流Buck变换器PLECS仿真模型:低压大电流输入12VDC,实现均流输出的动态表现与特性探究。,四相交错并联同步整流Buck变换器PLECS仿真模型:低压大电流输入12VDC,实现单相电流均流输出与性能分析,四相交错并联同步整流Buck变器 PLECS仿真 低压大电流 输入:12VDC 输出:1V 100A 单相电流25A实现均流输出 仿真模型 ,四相交错并联同步整流Buck变换器; PLECS仿真; 低压大电流; 12VDC输入; 1V输出; 100A输出; 均流输出。,基于四相交错并联同步整流技术的Buck变换器:PLECS仿真模型与均流输出分析
2025-11-24 13:57:11 4.24MB
1
永磁同步电机在现代工业和高精尖技术领域中扮演着重要角色,其高性能和高效率的特点使它成为众多应用中的首选。然而,电机在运行过程中会受到多种因素的影响,其中温度和大电流是影响永磁体性能的关键因素。本文将围绕MAXWELL永磁同步电机的磁仿真技术展开,特别是针对局部和全局磁场的分析,探讨温度和大电流对永磁体性能的影响。 我们需要了解永磁同步电机的基本工作原理。电机内部的永磁体能够产生稳定的磁场,而定子绕组中通过交变电流产生的旋转磁场与之相互作用,使电机实现旋转。电机的高效运转依赖于永磁体提供的稳定磁场,因此对永磁体的任何影响都会直接影响电机的性能和效率。 温度是影响永磁体性能的重要因素之一。随着电机运转,温度会上升,永磁体材料的磁性能会随着温度的变化而变化。某些永磁材料在高温下会出现磁性能下降,这种现象称为热退磁。因此,了解和模拟温度对永磁体的影响是磁仿真的重要部分,可以通过仿真提前预测电机在不同温度下的性能表现,以便采取相应的措施。 大电流的影响也不容忽视。在电机启动或者过载运行时,可能会出现大电流通过定子绕组。这些电流产生的强大磁场有可能对永磁体造成局部退磁。退磁不仅会降低电机的性能,严重时甚至会导致电机损坏。因此,在设计和使用电机时,必须考虑到电流对永磁体的影响,并在磁仿真中进行相应的分析。 仿真技术能够为设计者提供一个虚拟的实验环境,通过计算机模拟不同的工作条件,预测电机在各种情况下的性能表现。MAXWELL软件是一种强大的仿真工具,它可以帮助工程师进行永磁同步电机的磁仿真。仿真不仅仅局限于整体磁性能,它还可以针对局部磁场进行详细的分析。通过这种局部与整体的仿真结合,工程师能够更全面地理解电机在不同条件下的工作情况,从而优化电机设计。 本文提及的“附视频流程”可能指的是在仿真过程中,通过视频演示的方式记录仿真结果或仿真操作过程,使得结果更直观易懂,也有助于在设计团队中共享和交流仿真分析的经验和数据。 附带的文件列表中,有关于永磁同步电机退磁仿真的详细文档,这些文档不仅包括了仿真分析的背景介绍、引言,还提供了对于永磁同步电机在科技发展中应用情况的讨论。通过这些文档,可以更深入地了解永磁同步电机的理论基础和实际应用问题。 MAXWELL永磁同步电机磁仿真是一个复杂但关键的过程,它涉及到对电机性能至关重要的多个方面。通过仿真分析温度和大电流对永磁体的影响,可以在电机设计阶段就预测和解决潜在问题,从而提高电机的可靠性和效率。随着科技的发展,电机仿真技术也将不断进步,为电机设计和制造提供更加强大的支持。
2025-11-18 19:53:32 239KB
1
开关电源是一种将交流电或高压直流电转换为低压直流电的电力转换装置,广泛应用于各种电子设备中。在本主题中,重点是介绍一款能够处理4-60V输入电压范围,具有大电流和高功率特性的开关电源控制器。这款控制器能够实现高效能的能源转换,确保在宽输入电压范围内稳定工作。 描述中提到的"Current Mode, Synchronous Step-Down Controller"是指电流模式同步降压控制器。这种类型的控制器采用电流模式控制技术,通过监控输出电流来调整开关元件的占空比,从而精确控制输出电压。同步降压则意味着该控制器使用两个开关管(一个开关MOSFET用于导通,另一个用于关断),以减少开关损耗,提高效率,并支持更高的输出电流。 "4-60V输入"表明该控制器设计用于处理广泛的输入电压,这使得它适合应用在各种电源环境中,包括汽车、工业和家用设备等,这些场景中的电源电压可能有很大波动。 "大电流"和"高功率"特性表明该控制器能够处理大负载,提供高功率输出。这对于驱动大功率设备,如LED照明、电池充电器或者高性能计算模块来说至关重要。高功率开关电源需要高效的热管理,以防止过热并确保长期可靠性。 压缩包中的文件名称列表中,我们看到几个PDF文档,如MP2918.pdf、mpq2918.pdf、MPQ2908A.pdf、MP2908A.pdf和EV9928.pdf,这些都是可能与该开关电源控制器相关的数据手册或应用笔记。这些文件通常会包含以下内容: 1. MP2918/MPQ2918/MP2908A系列:这些可能是具体的控制器型号,每个PDF可能包含了这些器件的详细规格、电气特性、封装信息、引脚配置、电路图、工作原理、推荐的应用电路以及性能测试结果。 2. EV9928:这个可能是评估板的资料,包含评估板的硬件设计、连接指南、测试程序和性能评估数据,帮助用户快速理解和验证控制器在实际系统中的表现。 通过深入研究这些文档,工程师可以学习如何正确地使用这些控制器设计开关电源,包括如何选择合适的元器件、如何优化布局以降低电磁干扰(EMI)、如何进行热设计以及如何进行调试和故障排查。同时,这些资料也会提供必要的软件工具和固件信息,以便于进行闭环控制和保护功能的设置。 这一系列开关电源控制器设计用于处理宽输入电压、大电流和高功率应用,结合提供的PDF文档,为设计人员提供了全面的技术支持,以构建高效、可靠的电源解决方案。
2025-07-12 13:55:22 5.38MB 4-60V输入  大电流 开关电源
1
摘要: 介绍了一种以PWM 控制芯片UC3825为核心的低压大电流开关电源的设计方案, 阐述了主电路的拓扑结构及主控制电路的电路设计, 并设计了软启动及过压过流保护电路, 应用反馈手段和脉宽调制技术实现了电压、电流的稳定输出, 并研制了1台15 V /1 200 A的样机。   1  开关电源的设计   开关电源的基本结构主要由7部分组成: 输入整流滤波电路、高频开关变换器电路、整流输出电路、控制电路、保护电路、辅助电源以及显示电路。   1.1  主电路   该设计的主电路拓扑结构如图1 所示, 输入市网220 V 电压, 通过RC 滤波及整流桥整流、全桥逆变、高频变压器、输出整流以 本文主要探讨了一种基于PWM控制芯片UC3825的低压大电流开关电源的设计方案,该方案特别适用于需要处理大电流、低电压的场合。开关电源作为一种高效能的电力转换设备,其基本构造包含了输入整流滤波电路、高频开关变换器、整流输出电路、控制电路、保护电路、辅助电源以及显示电路等多个关键部分。 1. 输入整流滤波电路(AC/DC) 输入电路首先通过RC滤波器消除市电中的高频干扰和浪涌电流,以确保电路的稳定工作。接着,整流桥将交流电压转换为直流电压,经过滤波电容进一步平滑输出,提供后续电路使用。 2. 高频开关变换器(DC/AC) 这是开关电源的核心,采用全桥逆变电路,四个IGBT(绝缘栅双极型晶体管)与高速功率二极管并联,用于减少电压尖峰,保护开关元件。IGBT因其低通态电压、高耐压、高速和简单驱动特性而被选用。通过PWM信号控制IGBT的导通和关断,将直流电压转换为高频交流电。 3. 输出整流滤波(AC/DC) 通过高频隔离变压器输出的交流电压,经过肖特基二极管整流和LC滤波器滤波,以输出稳定的直流电压。同时,输出端的分流器监控电压,反馈至控制电路进行精确调节。 4. 控制电路 UC3825作为核心控制芯片,其内部集成了振荡器、PWM比较器、锁存器、驱动器等多种功能,可实现高精度的电压和电流控制。UC3825的软启动和欠压锁定功能保证了电源的平稳启动和安全运行。通过调整PWM脉冲的占空比,可以控制输出电压的大小,同时设置适当的死区时间以避免桥臂短路。 5. 保护电路 设计中还包含了软启动和过压过流保护电路,以防止电源在异常情况下受损。软启动电路使得电源在启动时逐步增加输出,而过压过流保护则会在电压或电流超出预设范围时迅速响应,保护电路免受损害。 通过以上设计,作者成功研制出了一台15V/1200A的开关电源样机,证明了这种设计方案的可行性和有效性。在实际应用中,针对IGBT驱动电路的优化对于确保整体系统性能和寿命至关重要,因为它直接影响到开关管的开关速度和可靠性。因此,选择合适的驱动电路设计和元件参数至关重要,以确保开关电源能够在各种工况下稳定、高效地工作。
2025-04-10 12:13:17 329KB 元器件应用
1
今天呢,金籁科技电感厂家给大家介绍关于电感和电感器的区别。 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一,相关产品如一体成型电感等。 电感(inductance)是闭合回路的一种属性,即当通过闭合回路的电流改变时,会出现电动势来抵抗电流的改变。这种电感称为自感,是闭合回路自己本身的属性。假设一个闭合回路的电流改变,由于感应作用而产生电动势于另外一个闭合回路,这种电感称为互感。 自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。 互感 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度,利用此原理制成的元件叫做互感器。 电感器用绝缘导线绕制的各种线圈称为电感。用导线绕成一匝或多匝以产生一定自感量的电子元件,常称电感线圈或简称线圈。电感器在电子线路中
2024-01-13 18:06:30 200KB 金籁科技 一体成型电感 大电流电感
1
在电感的实际应用中,有时会出现意料之外的现象,故实际应用中的电感还得关心这些: 1、温度过高 电感器在工作过程中发热,导致温度升高时正常现象,若温度过高,铁芯和线圈容易因温度导致电感量的变化。所以,需注意电感器工作的环境温度和选用规格适当的电感器。 2、磁场干扰 电感器在工作是因有电流流通而在周围产生磁场。其他元件的摆放位置应尽量电感器或与电感线圈互成直角,以减少干扰。若要求较高,则可换用带屏蔽罩的电感器。 金籁科技一体成型电感 3、分布电容 电感器个层线圈之间,会产生分布电容量,可造成高频信号旁路,降低电感器的实际滤波效果,所以,在利用电感器进行高频滤波的时候要特别注意。 4、电感值的测量 用仪表测量电感值与Q之时,测试引线应尽量靠近电感器,以求数据准确。 本文由好电感 金籁造的金籁科技转载发表。
1
研制了一套适用于企业配电网低压大电流负荷的谐波与无功补偿装备,即HAPF-IVC综合补偿装置。采用高压与低压相结合的谐波治理方式,在变压器10 kV高压侧采用较小容量的高压注入式混合型有源电力滤波系统(HAPF),同时在380 V低压侧投运一组智能型无功补偿装置(IVC)与无源滤波器相配合以实现无功的动态补偿,达到了谐波治理和无功补偿相结合的效果,解决了大电流情况下HAPF容量限制的瓶颈。实验结果表明输入电流畸变率由补偿前的31.1 % 降低到3.9 %,功率因数由补偿前的0.7提高到0.95。
1
开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。从上世纪90年代以来开关电源相继进入各种电子、电器设备领域,计算机、程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源。随着电源技术的发展,低电压,大电流的开关电源因其技术含量高,应用广,越来越受到人们重视。
2023-06-28 14:23:33 396KB 开关电源
1
适合低压大电流应用的DCDC变换器的研究pdf,针对低压/大电流输出DC/DC 模块电源,根据同步整流电路的要求,选择出适合与之结合使用的高效拓扑——有源钳位自驱动同步整流正激变换器,分析了其工作原理和关键参数设计,通过样机实验,验证了该拓扑的高效性。
2023-04-07 16:44:28 277KB 开关电源
1