样本图:blog.csdn.net/2403_88102872/article/details/144557752 文件放服务器下载,请务必到电脑端资源预览或者资源详情查看然后下载 数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):2519 标注数量(json文件个数):2519 标注类别数:1 标注类别名称:["Wound"] 每个类别标注的框数: Wound count = 3016 使用标注工具:labelme=5.5.0 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2026-02-10 11:31:22 407B 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144433870 文件放服务器下载,请务必到电脑端资源预览或者资源详情查看然后下载 数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):9192 标注数量(json文件个数):9192 标注类别数:1 标注类别名称:["crack"] 每个类别标注的框数: crack count = 43129 使用标注工具:labelme5.2.0 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集可以转成mask或者yolo格式作语义分割或者实例分割 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2026-02-02 21:04:11 407B 数据集
1
SAM 3 (Segment Anything Model 3) 是 Meta 发布的用于 可提示概念分割 (PCS) 的基础模型。在 SAM 2 的基础上,SAM 3 引入了一项全新的能力:detect、segment 和 track 通过文本提示、图像示例或两者指定的 所有实例。与之前每个提示分割单个对象的 SAM 版本不同,SAM 3 可以在图像或视频中找到并 segment 概念的每一次出现,这与现代 实例分割 中的开放词汇目标保持一致。 SAM 3 现已完全集成到 ultralytics 包,提供对概念 segment 的原生支持,支持文本提示、图像示例提示以及视频 track 功能。 SAM 3 在可提示概念分割方面比现有系统实现了 2 倍的性能提升,同时保持并改进了 SAM 2 在交互式 视觉分割方面的能力。该模型擅长开放词汇分割,允许用户使用简单的名词短语(例如,“黄色校车”、“条纹猫”)或提供目标对象的示例图像来指定概念。这些功能补充了依赖于简化 预测 和 跟踪 工作流的生产就绪管道。
2026-01-28 15:30:51 116B
1
Matlab肺结节分割(肺结节提取)源程序,也有GUI人机界面版本。 使用传统图像分割方法,非深度学习方法。 使用LIDC-IDRI数据集。 工作如下: 1、读取图像。 读取原始dicom格式的CT图像,并显示,绘制灰度直方图; 2、图像增强。 对图像进行图像增强,包括Gamma矫正、直方图均衡化、中值滤波、边缘锐化; 3、肺质分割。 基于阈值分割,从原CT图像中分割出肺质; 4、肺结节分割。 肺质分割后,进行特征提取,计算灰度特征、形态学特征来分割出肺结节; 5、可视化标注文件。 读取医生的xml标注文件,可视化出医生的标注结果; 6、计算IOU、DICE、PRE三个参数评价分割效果好坏。 7、做成GUI人机界面。 两个版本的程序中,红框内为主函数,可以直接运行,其他文件均为函数或数据。
2026-01-26 16:12:35 301KB matlab 深度学习
1
yolact_edge权重文件:yolact_edge_vid_resnet50_847_50000.pth
2026-01-20 13:55:48 135.28MB 深度学习 语义分割
1
yolact_edge模型:yolact_edge_youtubevis_resnet50_847_50000.pth
2026-01-20 13:55:02 118.06MB 深度学习 语义分割
1
图像分割任务 1.添加分割头:可以在 DINOv3 输出的基础上增加一个解码器或直接添加几个卷积层,构建出适合于分割任务的结构,如 U-Net 或者 FPN。 2.训练分割头:对新增加的分割头进行训练,而保持骨干网络的参数固定。 分割训练示例程序 DINOv3是一个深度学习模型,它在计算机视觉领域中被广泛使用,特别是在图像处理的下游任务中,例如图像分类、目标检测和图像分割等任务。在这些任务中,DINOv3通常被用作特征提取的骨干网络,从而有效地提供对复杂图像数据的深入理解。 当涉及到图像分割任务时,DINOv3可以发挥重要作用。图像分割是计算机视觉中一种将图像分割成多个部分或对象的技术,目的是简化或改变图像的表示形式,使得图像中每个像素都能被赋予一个标签,这些标签表示像素属于特定的对象类别或区域。 为了使用DINOv3进行图像分割,通常需要在DINOv3的输出基础上添加一个解码器,或者直接通过添加几个卷积层来构建适合分割任务的网络结构。这种方法可以被看作是在DINOv3网络上增加了一个“分割头”。常见的结构如U-Net或者FPN(Feature Pyramid Network)等,它们能够有效地将从DINOv3骨干网络提取的高级特征进行进一步的处理,生成图像的像素级分类。 训练分割头涉及的步骤是在保持骨干网络参数不变的情况下,单独对新增加的分割头进行训练。这样可以确保已经训练好的DINOv3骨干网络的特征提取能力不会因训练分割头而受到影响。在训练过程中,一般需要大量的标注数据作为监督信息,以确保分割模型能够准确地识别并分割图像中的不同区域。 分割训练示例程序可能包括了数据加载、预处理、模型定义、损失函数计算、优化器选择、训练循环和验证等步骤。在此过程中,DINOv3骨干网络及其分割头的参数会被调整以最小化预测与真实标签之间的差异。随着训练的进行,分割模型的性能将会逐步提高,直到满足预定的评价标准。 分割模型的最终目标是在不同的应用场景中都能够准确地对图像进行分割,例如在医学图像分析中识别不同类型的组织,在自动驾驶中检测道路边界和行人,在卫星图像中识别建筑物和植被等。通过使用DINOv3,研究人员和开发人员可以构建出能够处理复杂视觉任务的强大模型。 此外,DINOv3在适应不同的图像分割任务方面显示出灵活性。例如,它可以被调整为处理不同的图像尺寸、类别数量以及不同的分割精度要求。通过微调网络结构和训练策略,可以优化DINOv3以适应特定应用的需求。 DINOv3作为一个强大的特征提取骨干网络,在图像分割等下游任务中表现出色。通过在其基础上增加分割头,并进行适应性训练,可以有效地解决各种图像分割问题,大大扩展了DINOv3的应用范围。
2026-01-19 10:45:10 16KB
1
本书深入讲解基于Detectron2的现代计算机视觉技术,涵盖目标检测、实例分割、关键点检测等核心任务。通过代码实践与可视化方法,帮助读者构建、训练和部署深度学习模型。内容覆盖数据准备、模型架构、图像增强、微调策略及生产部署,适用于从入门到进阶的开发者。结合真实案例如脑肿瘤分割,提升实战能力,助力AI视觉应用落地。 Detectron2是由Facebook AI研究院推出的一个用于计算机视觉研究的平台,它在目标检测、实例分割和关键点检测等任务上提供了先进的模型和工具。本书以Detectron2为核心,详细讲解了构建和部署深度学习模型的全流程,涵盖了从数据准备到模型部署的各项技术。内容从基础概念入手,逐步引导读者深入到模型架构的细节,并通过代码实践和可视化手段,帮助读者理解算法的实际工作原理。 书中的内容不仅包括了理论知识,还包括大量的动手实践环节,让读者可以在真实的项目中应用所学知识。本书还特别强调了图像增强和微调策略,这些是提高模型性能和适应性的关键技术。通过这些技术,读者可以针对具体应用场景调整模型,以达到最佳的表现。书中提到的脑肿瘤分割案例,不仅让读者了解如何应用Detectron2来解决复杂的医疗图像分析问题,而且通过具体的实践项目,提高了解决实际问题的能力。 Detectron2作为本书的主要教学工具,它基于PyTorch框架构建,继承了该框架的灵活和易用性,使得开发者可以更高效地进行模型的训练和测试。通过掌握Detectron2,开发者能够访问和使用一系列预先训练好的高质量模型,如Mask R-CNN、RetinaNet和Faster R-CNN等,这些模型在多个标准数据集上已经表现出色。书中不仅提供了这些模型的使用教程,还教授读者如何根据自己的需求对模型进行调整和优化。 在实际开发中,数据准备是一个不可或缺的环节,本书对数据预处理、标注和增强等技术做了详细介绍,这些都是构建高性能计算机视觉系统的关键步骤。书中还详细说明了在模型训练过程中可能会遇到的各种问题以及解决方案,比如过拟合、欠拟合和梯度消失等问题。 在模型架构方面,本书深入探讨了卷积神经网络(CNN)的原理和实践,这些是深度学习中的核心技术,对于实现目标检测和图像分割等任务至关重要。书中不但介绍了这些网络结构的理论知识,而且重点讲解了如何在Detectron2中使用和扩展这些结构。 生产部署是本书的一个重要组成部分,它指导读者如何将训练好的模型部署到生产环境中。这个过程通常包括模型的压缩、加速和集成到具体的应用程序中。本书提供了多个案例研究,以帮助读者理解在不同的应用场景中部署模型的最佳实践。 本书是一本全面深入的Detectron2指南,适合不同层次的开发者,无论他们是刚刚接触计算机视觉的新手,还是已经有一定基础希望进一步提高的进阶读者。通过本书,读者将能够深入理解计算机视觉的核心技术和最新发展,并将所学知识应用于实际项目中,从而为AI视觉应用的落地贡献力量。
2026-01-15 17:31:40 35.46MB 计算机视觉 目标检测 图像分割
1
在当今计算机视觉领域,深度学习模型已经成为了图像处理的核心技术之一。其中,YOLO(You Only Look Once)模型作为一种高效的实时目标检测算法,一直受到广泛的关注和应用。YOLO模型以其快速和准确的特性,在目标检测任务中表现出色。而随着模型的发展,YOLO的变种如YOLO11n-seg模型,更是将目标检测与图像分割的能力相结合,进一步提升了处理复杂图像场景的能力。 在实际应用中,尤其是在C++这样的系统级编程语言环境中,高效地利用深度学习模型进行图像处理是一项挑战。OpenCV作为一个开源的计算机视觉和机器学习软件库,为开发者提供了丰富的工具和接口。OpenCV版本4.10.0中引入的dnn模块,让开发者能够直接加载预训练的深度学习模型,如ONNX(Open Neural Network Exchange)格式的模型文件,并在本地系统上进行推理。 在这样的背景下,源码“yolo11n-seg.onnx模型在C++ OpenCV4.10.0dnn模块下进行分割并绘制分割区域”的出现,无疑为那些希望利用YOLO11n-seg模型进行图像分割的开发者提供了一个便利的工具。该源码展示如何加载YOLO11n-seg模型,并通过OpenCV的dnn模块在C++环境中进行图像处理。源码不仅包括模型加载和推理的过程,更重要的是展示了如何从模型的输出中提取分割区域,并将这些区域在原始图像上绘制出来。这样的功能对于理解模型输出和进行后续的图像分析工作至关重要。 YOLO11n-seg模型相较于传统的目标检测模型,增加了对像素级理解的能力,它能够识别并区分图像中的每个对象,提供每个像素点的归属信息。这对于分割任务来说至关重要,能够更精确地描绘出图像中不同对象的轮廓。将这一模型应用于实际的计算机视觉项目,可以帮助开发者在视频监控、自动驾驶车辆感知、机器人导航等多个领域实现更为精确的图像理解。 对于进行深度学习和计算机视觉项目的开发者来说,能够直接使用C++和OpenCV进行这样的图像处理任务,具有极大的便利性。因为C++是一种性能优良、运行效率高的编程语言,非常适合进行硬件级的操作和优化。OpenCV库则提供了大量的图像处理功能和算法,这使得开发者能够专注于解决实际问题,而不必从零开始编写基础图像处理代码。特别是dnn模块的引入,极大地简化了在C++环境中利用深度学习模型的过程。 源码示例的发布,反映了社区对共享工具和资源的需求,也展示了开源文化在推动技术发展方面的重要性。通过对源码的阅读和学习,开发者不仅能够理解YOLO11n-seg模型在C++环境中的实现细节,还能够根据自己的项目需求对源码进行修改和扩展。这样的开源共享实践,有助于推动技术社区的共同进步,也为整个行业的创新提供了源源不断的动力。
2026-01-13 11:05:27 7KB yolo
1
基于数字图像处理和深度学习的车牌定位,字符分割识别项目,包含数据集和cnn模型、论文
2026-01-03 11:20:14 6.6MB
1