本文来自于简书,本文主要介绍了对YOLO原理进行目标检测,以及yolov2网络结构为全卷积网络FCN,希望对您的学习有所帮助。 创新点:端到端训练及推断+改革区域建议框式目标检测框架+实时目标检测 1.1创新点 (1)改革了区域建议框式检测框架:RCNN系列均需要生成建议框,在建议框上进行分类与回归,但建议框之间有重叠,这会带来很多重复工作。YOLO将全图划分为SXS的格子,每个格子负责中心在该格子的目标检
2024-05-30 00:35:39 775KB
1
本文来自于简书,本文主要介绍了对YOLO原理进行目标检测,以及yolov2网络结构为全卷积网络FCN,希望对您的学习有所帮助。创新点:端到端训练及推断+改革区域建议框式目标检测框架+实时目标检测1.1创新点(1)改革了区域建议框式检测框架:RCNN系列均需要生成建议框,在建议框上进行分类与回归,但建议框之间有重叠,这会带来很多重复工作。YOLO将全图划分为SXS的格子,每个格子负责中心在该格子的目标检测,采用一次性预测所有格子所含目标的bbox、定位置信度以及所有类别概率向量来将问题一次性解决(one-shot)。1.2Inference过程YOLO网络结构由24个卷积层与2个全连接层构成,网
2023-01-27 17:10:46 777KB [目标检测]YOLO原理
1