gUnet源码(Rethinking Performance Gains in Image Dehazing Networks)

上传者: zhouaho2010 | 上传时间: 2023-03-06 13:59:40 | 文件大小: 600KB | 文件类型: ZIP
gUnet源码,Rethinking Performance Gains in Image Dehazing Networks源码 我们不打算提出一个具有奇特模块的去雾网络;相反,我们对流行的U-Net进行了最小的修改,以获得一个紧凑的脱雾网络,这是论文的源码。

文件下载

资源详情

[{"title":"( 78 个子文件 600KB ) gUnet源码(Rethinking Performance Gains in Image Dehazing Networks)","children":[{"title":"gUNet-main","children":[{"title":"tools","children":[{"title":"convert2trt.py <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"qat.py <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 34.28KB </span>","children":null,"spread":false},{"title":"configs","children":[{"title":"reside-in","children":[{"title":"default.json <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"model_b.json <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"model_t.json <span style='color:#111;'> 42B </span>","children":null,"spread":false},{"title":"base.json <span style='color:#111;'> 338B </span>","children":null,"spread":false},{"title":"model_d.json <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"model_s.json <span style='color:#111;'> 42B </span>","children":null,"spread":false}],"spread":true},{"title":"reside-out","children":[{"title":"default.json <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"model_b.json <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"model_t.json <span style='color:#111;'> 42B </span>","children":null,"spread":false},{"title":"base.json <span style='color:#111;'> 341B </span>","children":null,"spread":false},{"title":"model_d.json <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"model_s.json <span style='color:#111;'> 42B </span>","children":null,"spread":false}],"spread":true},{"title":"haze4k","children":[{"title":"default.json <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"model_b.json <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"model_t.json <span style='color:#111;'> 42B </span>","children":null,"spread":false},{"title":"base.json <span style='color:#111;'> 340B </span>","children":null,"spread":false},{"title":"model_d.json <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"model_s.json <span style='color:#111;'> 42B </span>","children":null,"spread":false}],"spread":true},{"title":"rshaze","children":[{"title":"default.json <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"model_b.json <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"model_t.json <span style='color:#111;'> 42B </span>","children":null,"spread":false},{"title":"base.json <span style='color:#111;'> 338B </span>","children":null,"spread":false},{"title":"model_d.json <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"model_s.json <span style='color:#111;'> 42B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"utils","children":[{"title":"__init__.py <span style='color:#111;'> 143B </span>","children":null,"spread":false},{"title":"scheduler.py <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false}],"spread":true},{"title":"datasets","children":[{"title":"__init__.py <span style='color:#111;'> 44B </span>","children":null,"spread":false},{"title":"loader.py <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"figs","children":[{"title":"arch.png <span style='color:#111;'> 207.66KB </span>","children":null,"spread":false},{"title":"results.png <span style='color:#111;'> 323.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"overhead.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 73B </span>","children":null,"spread":false},{"title":"models","children":[{"title":"__init__.py <span style='color:#111;'> 194B </span>","children":null,"spread":false},{"title":"losses.py <span style='color:#111;'> 6.19KB </span>","children":null,"spread":false},{"title":"baselines","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"aodnet","children":[{"title":"__init__.py <span style='color:#111;'> 27B </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false}],"spread":false},{"title":"dehazenet","children":[{"title":"__init__.py <span style='color:#111;'> 30B </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false}],"spread":false},{"title":"dehazeformer","children":[{"title":"dehazeformer.py <span style='color:#111;'> 16.71KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 40B </span>","children":null,"spread":false}],"spread":false},{"title":"aecrnet","children":[{"title":"__init__.py <span style='color:#111;'> 28B </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 8.61KB </span>","children":null,"spread":false}],"spread":false},{"title":"ffanet","children":[{"title":"__init__.py <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 3.36KB </span>","children":null,"spread":false}],"spread":false},{"title":"dcpdn","children":[{"title":"__init__.py <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 18.72KB </span>","children":null,"spread":false}],"spread":false},{"title":"gfn","children":[{"title":"__init__.py <span style='color:#111;'> 24B </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 5.67KB </span>","children":null,"spread":false}],"spread":false},{"title":"pfdn","children":[{"title":"__init__.py <span style='color:#111;'> 25B </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false}],"spread":false},{"title":"msbdn","children":[{"title":"__init__.py <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 9.24KB </span>","children":null,"spread":false},{"title":"base_networks.py <span style='color:#111;'> 7.60KB </span>","children":null,"spread":false}],"spread":false},{"title":"mscnn","children":[{"title":"__init__.py <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false}],"spread":false},{"title":"griddehazenet","children":[{"title":"__init__.py <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 5.10KB </span>","children":null,"spread":false},{"title":"residual_dense_block.py <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false}],"spread":false},{"title":"gcanet","children":[{"title":"__init__.py <span style='color:#111;'> 27B </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"ablation.py <span style='color:#111;'> 11.24KB </span>","children":null,"spread":false},{"title":"gunet.py <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false},{"title":"norm_layer","children":[{"title":"__init__.py <span style='color:#111;'> 155B </span>","children":null,"spread":false},{"title":"sync_batchnorm","children":[{"title":"__init__.py <span style='color:#111;'> 547B </span>","children":null,"spread":false},{"title":"comm.py <span style='color:#111;'> 4.34KB </span>","children":null,"spread":false},{"title":"batchnorm.py <span style='color:#111;'> 16.04KB </span>","children":null,"spread":false},{"title":"replicate.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false}],"spread":false},{"title":"batchnorm.py <span style='color:#111;'> 6.31KB </span>","children":null,"spread":false},{"title":"layernorm.py <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 7.78KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 3.53KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.12KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明