调用sklearn库的K-Means聚类分析实例

上传者: zhaohaibo_ | 上传时间: 2021-05-31 09:49:15 | 文件大小: 7KB | 文件类型: PY
#class sklearn.cluster.KMeans(n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001, precompute_distances=’auto’, verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm=’auto’) #参数: #(1)对于K均值聚类,我们需要给定类别的个数n_cluster,默认值为8; #(2)max_iter为迭代的次数,这里设置最大迭代次数为300; #(3)n_init设为10意味着进行10次随机初始化,选择效果最好的一种来作为模型; #(4)init=’k-means++’ 会由程序自动寻找合适的n_clusters; #(5)tol:float形,默认值= 1e-4,与inertia结合来确定收敛条件; #(6)n_jobs:指定计算所用的进程数; #(7)verbose 参数设定打印求解过程的程度,值越大,细节打印越多; #(8)copy_x:布尔型,默认值=True。当我们precomputing distances时,将数据中心化会得到更准确的结果。如果把此参数值设为True,则原始数据不会被改变。如果是False,则会直接在原始数据上做修改并在函数返回值时将其还原。但是在计算过程中由于有对数据均值的加减运算,所以数据返回后,原始数据和计算前可能会有细小差别。 #属性: #(1)cluster_centers_:向量,[n_clusters, n_features] # Coordinates of cluster centers (每个簇中心的坐标??); #(2)Labels_:每个点的分类; #(3)inertia_:float,每个点到其簇的质心的距离之和。

文件下载

评论信息

  • 潜水ing今天不潜水 :
    这个确实哟用!!!
    2021-05-24

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明