EfficientDet-master.zip

上传者: ze1336365763 | 上传时间: 2021-04-20 16:12:01 | 文件大小: 80.87MB | 文件类型: ZIP
EfficientDet项目代码,包含efficientdet预训练模型、训练好的模型。包含efficientnet-b0_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5、efficientdet-d0.h5等,可训练、可测试。

文件下载

资源详情

[{"title":"( 50 个子文件 80.87MB ) EfficientDet-master.zip","children":[{"title":"EfficientDet-master","children":[{"title":"inference.py <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 13.85KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"colors.py <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"transform.py <span style='color:#111;'> 10.32KB </span>","children":null,"spread":false},{"title":"anchors.py <span style='color:#111;'> 12.73KB </span>","children":null,"spread":false},{"title":"compute_overlap.cpython-36m-x86_64-linux-gnu.so <span style='color:#111;'> 162.28KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 5.71KB </span>","children":null,"spread":false},{"title":"visualization.py <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"image.py <span style='color:#111;'> 11.39KB </span>","children":null,"spread":false},{"title":"compute_overlap.pyx <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"draw_boxes.py <span style='color:#111;'> 712B </span>","children":null,"spread":false}],"spread":true},{"title":".github","children":[{"title":"stale.yml <span style='color:#111;'> 683B </span>","children":null,"spread":false}],"spread":true},{"title":"initializers.py <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"efficientnet.py <span style='color:#111;'> 24.19KB </span>","children":null,"spread":false},{"title":"generators","children":[{"title":"coco.py <span style='color:#111;'> 5.58KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"pascal.py <span style='color:#111;'> 9.00KB </span>","children":null,"spread":false},{"title":"csv_.py <span style='color:#111;'> 13.03KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 18.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"README_quad.md <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false},{"title":"coco_90.json <span style='color:#111;'> 3.95KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 28.93KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 201B </span>","children":null,"spread":false},{"title":"inference_frozen_graph.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"efficientnet-b0_weights_tf_dim_ordering_tf_kernels_autoaugment.h5 <span style='color:#111;'> 20.82MB </span>","children":null,"spread":false},{"title":"tfkeras.py <span style='color:#111;'> 694B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"losses.py <span style='color:#111;'> 7.34KB </span>","children":null,"spread":false},{"title":"eval","children":[{"title":"coco.py <span style='color:#111;'> 7.16KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"pascal.py <span style='color:#111;'> 3.90KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 10.94KB </span>","children":null,"spread":false}],"spread":false},{"title":"test","children":[{"title":"demo.jpg <span style='color:#111;'> 412.96KB </span>","children":null,"spread":false}],"spread":false},{"title":"setup.py <span style='color:#111;'> 186B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.88KB </span>","children":null,"spread":false},{"title":"augmentor","children":[{"title":"misc.py <span style='color:#111;'> 11.49KB </span>","children":null,"spread":false},{"title":"transform.py <span style='color:#111;'> 15.88KB </span>","children":null,"spread":false},{"title":"color.py <span style='color:#111;'> 5.85KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false},{"title":"efficientdet-d0.h5 <span style='color:#111;'> 16.57MB </span>","children":null,"spread":false},{"title":"keras_.py <span style='color:#111;'> 670B </span>","children":null,"spread":false},{"title":"inference_video.py <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"efficientnet-b0_weights_tf_dim_ordering_tf_kernels.h5 <span style='color:#111;'> 20.81MB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 14.06KB </span>","children":null,"spread":false},{"title":"efficientnet-b0_weights_tf_dim_ordering_tf_kernels_notop.h5 <span style='color:#111;'> 15.92MB </span>","children":null,"spread":false},{"title":"inference_quad.py <span style='color:#111;'> 4.98KB </span>","children":null,"spread":false},{"title":"freeze_model.py <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"efficientnet-b0_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5 <span style='color:#111;'> 16.03MB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明