基于Rasa-NLU框架的中文自然语言理解系统-支持Spacy中文模型和Jieba分词-用于构建中文对话机器人的意图识别和实体抽取系统-包含中文词向量加载模块-支持自定义Jieba.zip

上传者: yzbABC1234 | 上传时间: 2025-11-16 12:11:57 | 文件大小: 142KB | 文件类型: ZIP
python基于Rasa_NLU框架的中文自然语言理解系统_支持Spacy中文模型和Jieba分词_用于构建中文对话机器人的意图识别和实体抽取系统_包含中文词向量加载模块_支持自定义Jieba.zip 在当今人工智能技术高速发展的背景下,自然语言处理(NLP)领域取得了显著的进步,其中自然语言理解(NLU)作为NLP的一个核心分支,扮演着至关重要的角色。自然语言理解系统能够使计算机更好地理解和解释人类语言,从而实现与人的有效交流。Rasa-NLU作为一款开源的自然语言理解框架,以其高度的灵活性和扩展性,在构建对话机器人和聊天机器人方面广受欢迎。 本项目正是基于Rasa-NLU框架,针对中文语言环境进行优化和扩展,旨在打造一套中文自然语言理解系统。系统不仅支持Spacy中文模型,还集成了Jieba分词工具,这两大支持为中文意图识别和实体抽取提供了强大的语言处理能力。Spacy模型以其先进的自然语言处理算法和丰富的语言模型库,在语义理解方面表现出色,而Jieba分词作为中文文本处理的利器,能高效准确地进行词汇切分,极大地提升了文本解析的准确度和效率。 此外,系统中还特别加入了中文词向量加载模块。词向量是一种将词汇转换为数学形式的表示方式,使得计算机能够理解词汇之间的语义关系。在自然语言处理任务中,利用词向量能够显著提升意图识别和实体抽取的准确性和效率。通过加载预训练的中文词向量,系统能够更好地把握词语的语义信息,对于理解用户输入的语句含义至关重要。 值得一提的是,本系统还支持自定义Jieba分词工具。用户可以根据自己的需求,对分词词典进行扩展和修改,或者直接使用自定义的Jieba.zip文件,这大大提高了系统的适应性和个性化水平。对于特定领域的对话机器人构建,用户可以通过自定义分词来优化对话内容的理解,从而更准确地识别用户的意图和抽取相关信息。 项目的实施和使用离不开详尽的文档说明。压缩包中包含的“附赠资源.docx”和“说明文件.txt”为用户提供必要的指导和信息,帮助用户快速了解系统的工作原理和操作步骤。同时,通过“rasa_nlu_cn-master”文件夹,用户可以直接接触到系统的源代码和相关配置,这对于需要对系统进行定制化开发的用户来说,无疑是一个巨大的便利。 基于Rasa-NLU框架的中文自然语言理解系统,通过集成Spacy中文模型、Jieba分词、中文词向量加载模块以及支持自定义分词功能,为构建具有高识别准确率和强大语义理解能力的中文对话机器人提供了完整的解决方案。这一系统的推出,无疑将推动中文自然语言理解技术的发展,并为相关应用的开发提供强有力的技术支持。

文件下载

资源详情

[{"title":"( 71 个子文件 142KB ) 基于Rasa-NLU框架的中文自然语言理解系统-支持Spacy中文模型和Jieba分词-用于构建中文对话机器人的意图识别和实体抽取系统-包含中文词向量加载模块-支持自定义Jieba.zip","children":[{"title":"rasa_nlu_cn-master","children":[{"title":"rasa_nlu","children":[{"title":"__init__.py <span style='color:#111;'> 297B </span>","children":null,"spread":false},{"title":"data_router.py <span style='color:#111;'> 15.51KB </span>","children":null,"spread":false},{"title":"evaluate.py <span style='color:#111;'> 30.17KB </span>","children":null,"spread":false},{"title":"version.py <span style='color:#111;'> 173B </span>","children":null,"spread":false},{"title":"schemas","children":[{"title":"nlu_model.yml <span style='color:#111;'> 108B </span>","children":null,"spread":false}],"spread":true},{"title":"project.py <span style='color:#111;'> 9.01KB </span>","children":null,"spread":false},{"title":"emulators","children":[{"title":"__init__.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"luis.py <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false},{"title":"wit.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"dialogflow.py <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false}],"spread":true},{"title":"training_data","children":[{"title":"__init__.py <span style='color:#111;'> 341B </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 956B </span>","children":null,"spread":false},{"title":"training_data.py <span style='color:#111;'> 7.44KB </span>","children":null,"spread":false},{"title":"formats","children":[{"title":"__init__.py <span style='color:#111;'> 491B </span>","children":null,"spread":false},{"title":"rasa.py <span style='color:#111;'> 5.06KB </span>","children":null,"spread":false},{"title":"luis.py <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"wit.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"readerwriter.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"dialogflow.py <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"markdown.py <span style='color:#111;'> 8.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"message.py <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"loading.py <span style='color:#111;'> 4.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"load_vector.py <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"__init__.py <span style='color:#111;'> 9.74KB </span>","children":null,"spread":false},{"title":"mitie_utils.py <span style='color:#111;'> 3.66KB </span>","children":null,"spread":false},{"title":"spacy_utils.py <span style='color:#111;'> 4.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"featurizers","children":[{"title":"__init__.py <span style='color:#111;'> 601B </span>","children":null,"spread":false},{"title":"regex_featurizer.py <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"count_vectors_featurizer.py <span style='color:#111;'> 9.78KB </span>","children":null,"spread":false},{"title":"spacy_featurizer.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"mitie_featurizer.py <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false},{"title":"ngram_featurizer.py <span style='color:#111;'> 15.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"convert.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 12.38KB </span>","children":null,"spread":false},{"title":"components.py <span style='color:#111;'> 16.57KB </span>","children":null,"spread":false},{"title":"server.py <span style='color:#111;'> 15.79KB </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"classifiers","children":[{"title":"__init__.py <span style='color:#111;'> 277B </span>","children":null,"spread":false},{"title":"embedding_intent_classifier.py <span style='color:#111;'> 27.36KB </span>","children":null,"spread":false},{"title":"sklearn_intent_classifier.py <span style='color:#111;'> 8.39KB </span>","children":null,"spread":false},{"title":"mitie_intent_classifier.py <span style='color:#111;'> 4.08KB </span>","children":null,"spread":false},{"title":"keyword_intent_classifier.py <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false}],"spread":false},{"title":"registry.py <span style='color:#111;'> 5.60KB </span>","children":null,"spread":false},{"title":"tokenizers","children":[{"title":"__init__.py <span style='color:#111;'> 565B </span>","children":null,"spread":false},{"title":"whitespace_tokenizer.py <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"mitie_tokenizer.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"jieba_tokenizer.py <span style='color:#111;'> 4.22KB </span>","children":null,"spread":false},{"title":"spacy_tokenizer.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false}],"spread":false},{"title":"extractors","children":[{"title":"__init__.py <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false},{"title":"spacy_entity_extractor.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"entity_synonyms.py <span style='color:#111;'> 4.31KB </span>","children":null,"spread":false},{"title":"duckling_extractor.py <span style='color:#111;'> 6.25KB </span>","children":null,"spread":false},{"title":"duckling_http_extractor.py <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"mitie_entity_extractor.py <span style='color:#111;'> 5.97KB </span>","children":null,"spread":false},{"title":"crf_entity_extractor.py <span style='color:#111;'> 20.56KB </span>","children":null,"spread":false}],"spread":false},{"title":"train.py <span style='color:#111;'> 6.19KB </span>","children":null,"spread":false},{"title":"persistor.py <span style='color:#111;'> 11.22KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 4.99KB </span>","children":null,"spread":false}],"spread":false},{"title":"setup.py <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"examples","children":[{"title":"rasa","children":[{"title":"demo-rasa.json <span style='color:#111;'> 6.88KB </span>","children":null,"spread":false},{"title":"demo-rasa_zh.json <span style='color:#111;'> 5.67KB </span>","children":null,"spread":false},{"title":"demo-rasa.md <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"alt_requirements","children":[{"title":"requirements_bare.txt <span style='color:#111;'> 288B </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 42B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 46B </span>","children":null,"spread":false},{"title":"setup.cfg <span style='color:#111;'> 427B </span>","children":null,"spread":false},{"title":"sample_configs","children":[{"title":"config_spacy.yml <span style='color:#111;'> 258B </span>","children":null,"spread":false},{"title":"config_spacy_jieba.yml <span style='color:#111;'> 249B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false}],"spread":true},{"title":"说明文件.txt <span style='color:#111;'> 574B </span>","children":null,"spread":false},{"title":"附赠资源.docx <span style='color:#111;'> 41.95KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明