Grafakos 现代傅里叶分析 GTM250 习题答案 Solution

上传者: yuxu9710108 | 上传时间: 2024-09-24 20:29:03 | 文件大小: 1.27MB | 文件类型: PDF
### Grafakos现代傅里叶分析GTM250习题解答知识点解析 #### 标题及描述概览 - **标题**:“Grafakos现代傅里叶分析GTM250习题答案Solution” - **描述**:“Grafakos现代傅里叶分析GTM250习题答案Solution” 这两个部分简明扼要地说明了文档的主要内容是关于Loukas Grafakos编写的《现代傅里叶分析》第三版(Graduate Texts in Mathematics系列编号250)一书中的所有习题解答。 #### 关键知识点详解 ##### 1. **关于本书** - **作者**: Loukas Grafakos。 - **版本**: 第三版。 - **出版商**: Springer。 - **出版日期**: 2014年3月20日。 这本书是《现代傅里叶分析》的第三版,它是Grafakos教授在傅里叶分析领域的经典著作之一,与《古典傅里叶分析》一起构成了完整的傅里叶分析学习体系。本书主要针对高级读者,如研究生或研究人员,涵盖了现代傅里叶分析的多个方面。 ##### 2. **致谢** - **致谢对象**: - Mukta Bhandari - Jameson Cahill - Santosh Ghimire - Zheng Hao - Danqing He - Nguyen Hoang - Sapto Indratno - Richard Lynch - Diego Maldonado - Hanh Van Nguyen - Peter Nguyen - Jesse Peterson - Sharad Silwal - Brian Tuomanen - Xiaojing Zhang 这些个人为《古典傅里叶分析》第三版(GTM 249)和《现代傅里叶分析》第三版(GTM 250)的习题解答提供了帮助。作者对其中可能存在的错误承担责任。 ##### 3. **内容概览** - **章节**: 第1章“平滑性和函数空间”。 该章主要讨论了函数空间的平滑性及其与傅里叶分析之间的关系。这一部分对于理解傅里叶分析中的基本概念和技术至关重要。 ##### 4. **习题解析示例** - **题目**: 给定多指数α、β,证明存在常数C、C′使得对于所有的Schwartz函数ϕ有: \[ ρ_{α,β}(ϕ) ≤ C\sum_{|γ|≤|α|} \sum_{|δ|≤|β|}ρ'_{γ,δ}(ϕ),\quad ρ'_{α,β}(ϕ) ≤ C'\sum_{|γ|≤|α|} \sum_{|δ|≤|β|}ρ_{γ,δ}(ϕ). \] 这里,$ρ_{α,β}$ 和 $ρ'_{α,β}$ 是两个不同的半范数(semi-norm),而Schwartz函数空间是指满足特定快速衰减条件的光滑函数的集合。该习题要求证明这两个半范数之间存在的不等式关系。 - **解析**: 1. **第一步**: 首先证明第一个不等式$ρ_{α,β}(ϕ) ≤ C\sum_{|γ|≤|α|} \sum_{|δ|≤|β|}ρ'_{γ,δ}(ϕ)$。 - 利用Leibniz规则可以很容易地得到这个结果。具体来说,对于任意的Schwartz函数$ϕ$,$\partial^β(ξ^αϕ)$可以表示成$c_γξ^γ\partial^{β-γ}ϕ$的形式的有限和,其中$c_γ$是与$γ$相关的常数。因此,$ρ_{α,β}(ϕ)$可以被有限个$ρ'_{γ,δ}(ϕ)$所控制。 2. **第二步**: 接下来证明第二个不等式$ρ'_{α,β}(ϕ) ≤ C'\sum_{|γ|≤|α|} \sum_{|δ|≤|β|}ρ_{γ,δ}(ϕ)$。 - 这一步需要利用数学归纳法来证明一个关键的恒等式: \[ ξ_j\partial^βϕ = \partial^β(ξ_jϕ) - \partial^βϕ - (β_j - 1)\partial^{β-e_j}ϕ,\quad \text{如果 } β_j ≥ 1 \] 其中$β = (β_1,...,β_n)$且$e_j = (0,...,1,...,0)$,1位于第$j$个位置。如果$β_j = 0$,则上式简化为$ξ_j\partial^βϕ = \partial^β(ξ_jϕ)$。 - 通过这个恒等式,我们可以将$ξ^α\partial^βϕ$表示为$∂^{γ}(ξ^jϕ)$和$∂^{γ}(ϕ)$的线性组合形式。这表明$ρ'_{α,β}(ϕ)$可以通过有限个$ρ_{γ,δ}(ϕ)$来估计。 通过以上分析可以看出,该习题不仅考察了学生对Leibniz规则的应用能力,还涉及到了数学归纳法的应用以及对Schwartz函数空间中半范数的理解。这些技能和概念在深入学习傅里叶分析时非常关键。 《现代傅里叶分析》一书及其习题解答对于希望深入了解傅里叶分析理论和应用的读者来说是非常有价值的资源。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明