[{"title":"( 73 个子文件 16.59MB ) JuypterNotebook.7z","children":[{"title":"sklearn快速使用.xmind <span style='color:#111;'> 234.66KB </span>","children":null,"spread":false},{"title":"03_Bayes","children":[{"title":".ipynb_checkpoints","children":[{"title":"Bayes-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"learn_seaborn_mushroom-checkpoint.ipynb <span style='color:#111;'> 91.48KB </span>","children":null,"spread":false},{"title":"mushroom_bayes-checkpoint.ipynb <span style='color:#111;'> 131.00KB </span>","children":null,"spread":false},{"title":"mushroom_randomforest-checkpoint.ipynb <span style='color:#111;'> 131.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"mushroom_randomforest.ipynb <span style='color:#111;'> 131.92KB </span>","children":null,"spread":false},{"title":"mushrooms.csv <span style='color:#111;'> 365.24KB </span>","children":null,"spread":false},{"title":"learn_seaborn_mushroom.ipynb <span style='color:#111;'> 91.48KB </span>","children":null,"spread":false},{"title":"mushroom_bayes.ipynb <span style='color:#111;'> 137.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"11_KerasDataSet","children":[{"title":".ipynb_checkpoints","children":[{"title":"KerasDataSet-checkpoint.ipynb <span style='color:#111;'> 6.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"KerasDataSet.ipynb <span style='color:#111;'> 6.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"算法流程图.png <span style='color:#111;'> 1.55MB </span>","children":null,"spread":false},{"title":"sklearn机器学习.xmind <span style='color:#111;'> 84.56KB </span>","children":null,"spread":false},{"title":"sklearn通用方法.png <span style='color:#111;'> 100.01KB </span>","children":null,"spread":false},{"title":"特征工程.png <span style='color:#111;'> 1.07MB </span>","children":null,"spread":false},{"title":"08_TF_Keras_LinerRegression","children":[{"title":".ipynb_checkpoints","children":[{"title":"TF_LinerRegression-checkpoint.ipynb <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"Keras_LinerRegression-checkpoint.ipynb <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"Keras_LinerRegression.ipynb <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"TF_LinerRegression.ipynb <span style='color:#111;'> 8.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"17_AICity","children":[{"title":".ipynb_checkpoints","children":[{"title":"sea-checkpoint.ipynb <span style='color:#111;'> 22.48KB </span>","children":null,"spread":false}],"spread":true},{"title":"sea.ipynb <span style='color:#111;'> 22.48KB </span>","children":null,"spread":false}],"spread":true},{"title":"14_DecisionTree_RandomForest","children":[{"title":".ipynb_checkpoints","children":[{"title":"DecisionTree_RandomForest-checkpoint.ipynb <span style='color:#111;'> 2.05MB </span>","children":null,"spread":false}],"spread":true},{"title":"diabetes.png <span style='color:#111;'> 878.38KB </span>","children":null,"spread":false},{"title":"DecisionTree_RandomForest.ipynb <span style='color:#111;'> 2.22MB </span>","children":null,"spread":false},{"title":"Rf1.png <span style='color:#111;'> 3.73MB </span>","children":null,"spread":false},{"title":"Rf2.png <span style='color:#111;'> 3.29MB </span>","children":null,"spread":false},{"title":"HR Analysis 2 and Prediction.ipynb <span style='color:#111;'> 219.67KB </span>","children":null,"spread":false},{"title":"Rf0.png <span style='color:#111;'> 3.27MB </span>","children":null,"spread":false},{"title":"HR_comma_sep.csv <span style='color:#111;'> 538.85KB </span>","children":null,"spread":false},{"title":"HR Analysis.ipynb <span style='color:#111;'> 182.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"sklearn特征工程.xmind <span style='color:#111;'> 130.19KB </span>","children":null,"spread":false},{"title":"02_DecisionTree","children":[{"title":".ipynb_checkpoints","children":[{"title":"DecisionTree-checkpoint.ipynb <span style='color:#111;'> 547.82KB </span>","children":null,"spread":false}],"spread":true},{"title":"iris.csv <span style='color:#111;'> 4.86KB </span>","children":null,"spread":false},{"title":"DecisionTree.ipynb <span style='color:#111;'> 547.82KB </span>","children":null,"spread":false}],"spread":true},{"title":"sklearn包模块.png <span style='color:#111;'> 226.34KB </span>","children":null,"spread":false},{"title":"04_SVM","children":[{"title":".ipynb_checkpoints","children":[{"title":"SVM-checkpoint.ipynb <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false}],"spread":false},{"title":"SVM.ipynb <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"06_Titanic","children":[{"title":".ipynb_checkpoints","children":[{"title":"01_泰坦尼克号生存预测分析.py-checkpoint.ipynb <span style='color:#111;'> 190.86KB </span>","children":null,"spread":false}],"spread":false},{"title":"train.csv <span style='color:#111;'> 59.76KB </span>","children":null,"spread":false},{"title":"01_泰坦尼克号生存预测分析.py.ipynb <span style='color:#111;'> 190.86KB </span>","children":null,"spread":false},{"title":"titanic.csv <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 27.96KB </span>","children":null,"spread":false}],"spread":false},{"title":"18_AISea","children":[{"title":".ipynb_checkpoints","children":[{"title":"AISea-checkpoint.ipynb <span style='color:#111;'> 11.08KB </span>","children":null,"spread":false}],"spread":false},{"title":"AISea.ipynb <span style='color:#111;'> 11.08KB </span>","children":null,"spread":false}],"spread":false},{"title":"sklearn快速使用文档.png <span style='color:#111;'> 455.20KB </span>","children":null,"spread":false},{"title":"13_SklearnDataSet","children":[{"title":".ipynb_checkpoints","children":[{"title":"SklearnDataSet-checkpoint.ipynb <span style='color:#111;'> 33.39KB </span>","children":null,"spread":false}],"spread":false},{"title":"SklearnDataSet.ipynb <span style='color:#111;'> 33.39KB </span>","children":null,"spread":false}],"spread":false},{"title":"12_CNNmnist","children":[{"title":".ipynb_checkpoints","children":[{"title":"CNNmnist-checkpoint.ipynb <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false}],"spread":false},{"title":"CNNmnist.ipynb <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false}],"spread":false},{"title":"00_PythonBase","children":[{"title":".ipynb_checkpoints","children":[{"title":"Untitled-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false}],"spread":false},{"title":"main.py <span style='color:#111;'> 10.41KB </span>","children":null,"spread":false}],"spread":false},{"title":"15_LightGBM","children":[{"title":".ipynb_checkpoints","children":[{"title":"LightGBM-checkpoint.ipynb <span style='color:#111;'> 49.14KB </span>","children":null,"spread":false}],"spread":false},{"title":"LightGBM.ipynb <span style='color:#111;'> 49.14KB </span>","children":null,"spread":false}],"spread":false},{"title":"09_Keras_LogiRegression","children":[{"title":".ipynb_checkpoints","children":[{"title":"KerasLogiRegression-checkpoint.ipynb <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false}],"spread":false},{"title":"KerasLogiRegression.ipynb <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false}],"spread":false},{"title":"05_Seaborn","children":[{"title":".ipynb_checkpoints","children":[{"title":"Seaborn-checkpoint.ipynb <span style='color:#111;'> 266.38KB </span>","children":null,"spread":false}],"spread":false},{"title":"tips.csv <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"Seaborn.ipynb <span style='color:#111;'> 266.38KB </span>","children":null,"spread":false}],"spread":false},{"title":"07_KMeans","children":[{"title":".ipynb_checkpoints","children":[{"title":"KMeans-checkpoint.ipynb <span style='color:#111;'> 38.96KB </span>","children":null,"spread":false}],"spread":false},{"title":"xigua.csv <span style='color:#111;'> 514B </span>","children":null,"spread":false},{"title":"KMeans.ipynb <span style='color:#111;'> 38.96KB </span>","children":null,"spread":false}],"spread":false},{"title":"image2020-2-23 21_27_28.png <span style='color:#111;'> 65.20KB </span>","children":null,"spread":false},{"title":"16_XGBoost","children":[{"title":".ipynb_checkpoints","children":[{"title":"XGBoost-checkpoint.ipynb <span style='color:#111;'> 34.94KB </span>","children":null,"spread":false}],"spread":false},{"title":"XGBoost.ipynb <span style='color:#111;'> 34.94KB </span>","children":null,"spread":false}],"spread":false},{"title":"01_LinerRegression","children":[{"title":".ipynb_checkpoints","children":[{"title":"LinerRegression-checkpoint.ipynb <span style='color:#111;'> 7.45KB </span>","children":null,"spread":false}],"spread":false},{"title":"train.csv <span style='color:#111;'> 673.35KB </span>","children":null,"spread":false},{"title":"LinerRegression.ipynb <span style='color:#111;'> 7.45KB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 181.21KB </span>","children":null,"spread":false}],"spread":false},{"title":"sklearn特征工程.png <span style='color:#111;'> 142.84KB </span>","children":null,"spread":false},{"title":"19_RandomForestClassifier","children":[{"title":".ipynb_checkpoints","children":[{"title":"RandomForestClassifier-checkpoint.ipynb <span style='color:#111;'> 69.76KB </span>","children":null,"spread":false}],"spread":false},{"title":"RandomForestClassifier.ipynb <span style='color:#111;'> 69.76KB </span>","children":null,"spread":false}],"spread":false},{"title":"10_KerasMnist","children":[{"title":".ipynb_checkpoints","children":[{"title":"KerasMnist-checkpoint.ipynb <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false}],"spread":false},{"title":"KerasMnist.ipynb <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]