[{"title":"( 39 个子文件 1.79MB ) SFFT算法的实现","children":[{"title":"sFFT-1.0-2.0","children":[{"title":"filters.h <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"plot.cc <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"experiment.cc~ <span style='color:#111;'> 16.88KB </span>","children":null,"spread":false},{"title":"fftw3.h <span style='color:#111;'> 17.72KB </span>","children":null,"spread":false},{"title":"experiment <span style='color:#111;'> 1.42MB </span>","children":null,"spread":false},{"title":"plot.h <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false},{"title":"GNUmakefile <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"filters.cc <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"computefourier.o <span style='color:#111;'> 45.48KB </span>","children":null,"spread":false},{"title":"kaiserbessel.cc~ <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"README.pdf <span style='color:#111;'> 616.59KB </span>","children":null,"spread":false},{"title":"utils.cc~ <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false},{"title":"test.cc~ <span style='color:#111;'> 116B </span>","children":null,"spread":false},{"title":"kaiserbessel <span style='color:#111;'> 1.18MB </span>","children":null,"spread":false},{"title":"timer.cc <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"generate_graphs <span style='color:#111;'> 1.24MB </span>","children":null,"spread":false},{"title":"parameters.cc <span style='color:#111;'> 9.26KB </span>","children":null,"spread":false},{"title":"utils.cc <span style='color:#111;'> 5.68KB </span>","children":null,"spread":false},{"title":"COPYRIGHT.txt <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"fftw.h <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"timer.o <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"parameters.h <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"plot.o <span style='color:#111;'> 46.70KB </span>","children":null,"spread":false},{"title":"filters.cc~ <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"filters.o <span style='color:#111;'> 7.56KB </span>","children":null,"spread":false},{"title":"computefourier.h <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"fftw.cc <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"fft.h <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"generate_graphs.cc <span style='color:#111;'> 13.30KB </span>","children":null,"spread":false},{"title":"utils.o <span style='color:#111;'> 11.38KB </span>","children":null,"spread":false},{"title":"utils.h <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"fftw.o <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"computefourier.cc~ <span style='color:#111;'> 21.59KB </span>","children":null,"spread":false},{"title":"parameters.o <span style='color:#111;'> 7.74KB </span>","children":null,"spread":false},{"title":"generate_graphs.cc~ <span style='color:#111;'> 13.27KB </span>","children":null,"spread":false},{"title":"timer.h <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"experiment.cc <span style='color:#111;'> 16.88KB </span>","children":null,"spread":false},{"title":"kaiserbessel.cc <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"computefourier.cc <span style='color:#111;'> 21.63KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]