Origin 9.0科技绘图与数据分析超级学习手册-数据文件

上传者: xiaobaigou2008 | 上传时间: 2022-05-11 21:26:46 | 文件大小: 10.59MB | 文件类型: RAR
《Origin 9.0科技绘图与数据分析超级学习手册》以叙述Origin 9.0版本的功能为主,由浅入深地讲解了Origin的知识,涵盖了一般用户所要用到的各种功能,并详细介绍了Origin常用工具的使用。《Origin 9.0科技绘图与数据分析超级学习手册》按逻辑编排,自始至终采用实例描述,内容完整且每章相对独立,是一本简明的Origin使用手册。 《Origin 9.0科技绘图与数据分析超级学习手册》共分为16章,详细介绍了Origin的基础知识,电子表格及数据管理,二维图形绘制,三维图形绘制,图形的输出和利用,曲线拟合,数据操作和分析,数字信号处理,峰拟合和光谱分析,统计分析等内容。在本书最后,还重点介绍了Origin中编程与自动化的实现方法及其运用。 《Origin 9.0科技绘图与数据分析超级学习手册》以实用为目标,以实例来引导,讲解详实、深入浅出,适合作为理工科研究生、本科生的教学用书,也可以作为广大科研工作者进行科技图形制作的参考书。

文件下载

资源详情

[{"title":"( 80 个子文件 10.59MB ) Origin 9.0科技绘图与数据分析超级学习手册-数据文件","children":[{"title":"Smaples","children":[{"title":"Chapter 04","children":[{"title":"Excel Data.xls <span style='color:#111;'> 29.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 12","children":[{"title":"Signal with High Frequency Noise.dat <span style='color:#111;'> 35.79KB </span>","children":null,"spread":false},{"title":"EPR Spectra.DAT <span style='color:#111;'> 16.28KB </span>","children":null,"spread":false},{"title":"Average Sunspot.dat <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"Chirp Signal.dat <span style='color:#111;'> 33.97KB </span>","children":null,"spread":false},{"title":"Step Signal with Random Noise.dat <span style='color:#111;'> 13.04KB </span>","children":null,"spread":false},{"title":"fftfilter1.DAT <span style='color:#111;'> 3.52KB </span>","children":null,"spread":false},{"title":"Convolution.dat <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"Coherence.dat <span style='color:#111;'> 16.94KB </span>","children":null,"spread":false},{"title":"fftfilter2.DAT <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 16","children":[{"title":"Signal with Shot Noise.dat <span style='color:#111;'> 12.72KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 10","children":[{"title":"Multiple Linear Regression.dat <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"Gaussian.dat <span style='color:#111;'> 644B </span>","children":null,"spread":false},{"title":"XYZ Random Gaussian.dat <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"Exponential Decay.dat <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"Linear Fit.dat <span style='color:#111;'> 572B </span>","children":null,"spread":false},{"title":"Apparent Fit.dat <span style='color:#111;'> 987B </span>","children":null,"spread":false},{"title":"Lorentzian.dat <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"Polynomial Fit.dat <span style='color:#111;'> 700B </span>","children":null,"spread":false},{"title":"Multiple Peaks.dat <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 11","children":[{"title":"Sine Curve.dat <span style='color:#111;'> 346B </span>","children":null,"spread":false},{"title":"3D Interpolation.dat <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"Circle.dat <span style='color:#111;'> 536B </span>","children":null,"spread":false},{"title":"Interpolation.dat <span style='color:#111;'> 450B </span>","children":null,"spread":false},{"title":"Multiple Peaks.dat <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false},{"title":"Raman Baseline.dat <span style='color:#111;'> 21.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 14","children":[{"title":"One-Way_ANOVA_indexed.dat <span style='color:#111;'> 890B </span>","children":null,"spread":false},{"title":"Histogram.dat <span style='color:#111;'> 28.51KB </span>","children":null,"spread":false},{"title":"phm_Cox.dat <span style='color:#111;'> 7.44KB </span>","children":null,"spread":false},{"title":"Kaplan-Meier.dat <span style='color:#111;'> 4.40KB </span>","children":null,"spread":false},{"title":"body.dat <span style='color:#111;'> 851B </span>","children":null,"spread":false},{"title":"One-Way RM ANOVA_raw.dat <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"Two-Way_ANOVA_indexed.dat <span style='color:#111;'> 469B </span>","children":null,"spread":false},{"title":"One-Way_ANOVA_raw.dat <span style='color:#111;'> 579B </span>","children":null,"spread":false},{"title":"Automobile Data.ogw <span style='color:#111;'> 43.50KB </span>","children":null,"spread":false},{"title":"QC Chart.dat <span style='color:#111;'> 155B </span>","children":null,"spread":false},{"title":"time_raw.dat <span style='color:#111;'> 122B </span>","children":null,"spread":false},{"title":"Box Chart.dat <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"Two-Way_ANOVA_raw.dat <span style='color:#111;'> 176B </span>","children":null,"spread":false},{"title":"temperature.dat <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"Statistical and Specialized Graphs.opj <span style='color:#111;'> 8.58MB </span>","children":null,"spread":false},{"title":"abrasion_raw.dat <span style='color:#111;'> 127B </span>","children":null,"spread":false},{"title":"Two-Way RM ANOVA_raw.dat <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false}],"spread":false},{"title":"Chapter 05","children":[{"title":"Group.DAT <span style='color:#111;'> 59B </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 09","children":[{"title":"Linked Layers 1.dat <span style='color:#111;'> 790B </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 08","children":[{"title":"Color Scale 2.dat <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"Color Scale 1.dat <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"Nitrite.dat <span style='color:#111;'> 94.24KB </span>","children":null,"spread":false},{"title":"Template.dat <span style='color:#111;'> 10.46KB </span>","children":null,"spread":false},{"title":"Linked Layers 2.dat <span style='color:#111;'> 6.03KB </span>","children":null,"spread":false},{"title":"Inset.dat <span style='color:#111;'> 21.71KB </span>","children":null,"spread":false},{"title":"Linked Layers 1.dat <span style='color:#111;'> 790B </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 07","children":[{"title":"XYZ Random Gaussian.dat <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"gid135","children":[{"title":"gid135.opj <span style='color:#111;'> 96.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"3D OpenGL Graphs.opj <span style='color:#111;'> 9.76MB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 13","children":[{"title":"Peaks with Base.DAT <span style='color:#111;'> 7.20KB </span>","children":null,"spread":false},{"title":"HiddenPeaks.dat <span style='color:#111;'> 13.68KB </span>","children":null,"spread":false},{"title":"Peaks on Exponential Baseline.dat <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"Lorentzian.dat <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"Multiple Peaks.dat <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 06","children":[{"title":"Ternary1.dat <span style='color:#111;'> 652B </span>","children":null,"spread":false},{"title":"Ternary4.dat <span style='color:#111;'> 412B </span>","children":null,"spread":false},{"title":"Waterfall.dat <span style='color:#111;'> 429.04KB </span>","children":null,"spread":false},{"title":"Ternary2.dat <span style='color:#111;'> 857B </span>","children":null,"spread":false},{"title":"Outlier.dat <span style='color:#111;'> 126B </span>","children":null,"spread":false},{"title":"Ternary3.dat <span style='color:#111;'> 549B </span>","children":null,"spread":false},{"title":"gid164","children":[{"title":"gid164.opj <span style='color:#111;'> 182.45KB </span>","children":null,"spread":false}],"spread":false},{"title":"pid974","children":[{"title":"pid974.opj <span style='color:#111;'> 89.39KB </span>","children":null,"spread":false}],"spread":false},{"title":"pid828","children":[{"title":"pid828.opj <span style='color:#111;'> 251.82KB </span>","children":null,"spread":false}],"spread":false},{"title":"pid887","children":[{"title":"pid887.opj <span style='color:#111;'> 45.99KB </span>","children":null,"spread":false}],"spread":false},{"title":"Group.DAT <span style='color:#111;'> 59B </span>","children":null,"spread":false},{"title":"Nitrite.dat <span style='color:#111;'> 94.24KB </span>","children":null,"spread":false},{"title":"Template.dat <span style='color:#111;'> 10.46KB </span>","children":null,"spread":false},{"title":"3D Pie Chart.dat <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"Statistical and Specialized Graphs.opj <span style='color:#111;'> 8.58MB </span>","children":null,"spread":false}],"spread":false},{"title":"Chapter 15","children":[{"title":"red camellia.jpg <span style='color:#111;'> 36.53KB </span>","children":null,"spread":false},{"title":"Flower.jpg <span style='color:#111;'> 241.71KB </span>","children":null,"spread":false},{"title":"Rice.bmp <span style='color:#111;'> 1.44MB </span>","children":null,"spread":false},{"title":"cell.jpg <span style='color:#111;'> 77.20KB </span>","children":null,"spread":false},{"title":"Car.bmp <span style='color:#111;'> 549.37KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明