[{"title":"( 29 个子文件 3.88MB ) 基于多种遗传算法(NSGA-II,NSGA-III,C-TAEA)和模糊优化算法的实现(python)","children":[{"title":"bmp-multiobjective-optimisation-master","children":[{"title":"multiobjective","children":[{"title":"optimise.py <span style='color:#111;'> 17.35KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 548B </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"historic","children":[{"title":"historic_nonrooftop.cpg <span style='color:#111;'> 10B </span>","children":null,"spread":false},{"title":"historic_rooftop.shp <span style='color:#111;'> 273.51KB </span>","children":null,"spread":false},{"title":"historic_nonrooftop.dbf <span style='color:#111;'> 63.07KB </span>","children":null,"spread":false},{"title":"historic_rooftop.shx <span style='color:#111;'> 15.72KB </span>","children":null,"spread":false},{"title":"historic_rooftop.prj <span style='color:#111;'> 389B </span>","children":null,"spread":false},{"title":"historic_rooftop.cpg <span style='color:#111;'> 10B </span>","children":null,"spread":false},{"title":"historic_rooftop.dbf <span style='color:#111;'> 486.61KB </span>","children":null,"spread":false},{"title":"historic_nonrooftop.prj <span style='color:#111;'> 389B </span>","children":null,"spread":false},{"title":"historic_nonrooftop.shx <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"historic_nonrooftop.shp <span style='color:#111;'> 45.66KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"fuzzy","children":[{"title":"reproduce_optimisation_progress_plot.ipynb <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"fuzzy_optimise.py <span style='color:#111;'> 19.20KB </span>","children":null,"spread":false},{"title":"final_results","children":[{"title":"exp2","children":[{"title":"optimisation_progress.png <span style='color:#111;'> 1.13MB </span>","children":null,"spread":false},{"title":"nonlinear.csv <span style='color:#111;'> 32.68KB </span>","children":null,"spread":false},{"title":"optimisation_progress.csv <span style='color:#111;'> 236.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"exp0","children":[{"title":"optimisation_progress.png <span style='color:#111;'> 155.43KB </span>","children":null,"spread":false},{"title":"hyperbolic.csv <span style='color:#111;'> 466B </span>","children":null,"spread":false},{"title":"default_convergence.png <span style='color:#111;'> 155.43KB </span>","children":null,"spread":false},{"title":"optimisation_progress.csv <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"exp1","children":[{"title":"optimisation_progress.png <span style='color:#111;'> 2.24MB </span>","children":null,"spread":false},{"title":"exponential.csv <span style='color:#111;'> 32.97KB </span>","children":null,"spread":false},{"title":"optimisation_progress.csv <span style='color:#111;'> 232.90KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 377B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 41B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]