德国-交通标志-分类-使用-TensorFlow

上传者: wq6qeg88 | 上传时间: 2022-05-06 18:05:57 | 文件大小: 8.76MB | 文件类型: ZIP
在这个项目中,我使用 Python 和 TensorFlow 对交通标志进行分类。使用的数据集:德国交通标志数据集。该数据集包含 43 个类别的 50,000 多张图像。我能够达到 +99% 的验证准确度和 97.3% 的测试准确度。加载数据。 数据集总结与探索 数据预处理。 洗牌。 灰度。 局部直方图均衡。 正常化。 设计模型架构。 LeNet-5。 VGG 网络。 模型训练和评估。 使用测试集测试模型。 在新图像上测试模型。

文件下载

资源详情

[{"title":"( 36 个子文件 8.76MB ) \n德国-交通标志-分类-使用-TensorFlow","children":[{"title":"German-Traffic-Sign-Classification-Using-TensorFlow-master","children":[{"title":"Pipeline architecture.png <span style='color:#111;'> 125.60KB </span>","children":null,"spread":false},{"title":"signnames.csv <span style='color:#111;'> 999B </span>","children":null,"spread":false},{"title":"_config.yml <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"VGGNet.png <span style='color:#111;'> 19.65KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 42B </span>","children":null,"spread":false},{"title":"Traffic_Sign_Classifier.ipynb <span style='color:#111;'> 425.92KB </span>","children":null,"spread":false},{"title":"LeNet.png <span style='color:#111;'> 71.40KB </span>","children":null,"spread":false},{"title":"Saved_Models","children":[{"title":"checkpoint <span style='color:#111;'> 69B </span>","children":null,"spread":false},{"title":"VGGNet.meta <span style='color:#111;'> 290.00KB </span>","children":null,"spread":false},{"title":"VGGNet.index <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false},{"title":"LeNet.meta <span style='color:#111;'> 77.38KB </span>","children":null,"spread":false},{"title":"LeNet.data-00000-of-00001 <span style='color:#111;'> 756.00KB </span>","children":null,"spread":false},{"title":"LeNet.index <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"VGGNet.data-00000-of-00001 <span style='color:#111;'> 7.27MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 19.18KB </span>","children":null,"spread":false},{"title":"Traffic_Sign_Classifier.html <span style='color:#111;'> 766.93KB </span>","children":null,"spread":false},{"title":"traffic-signs-data","children":[{"title":"new_test_images","children":[{"title":"005.jpg <span style='color:#111;'> 32.31KB </span>","children":null,"spread":false},{"title":"004.jpg <span style='color:#111;'> 128.14KB </span>","children":null,"spread":false},{"title":"001.jpg <span style='color:#111;'> 225.67KB </span>","children":null,"spread":false},{"title":"002.jpg <span style='color:#111;'> 133.58KB </span>","children":null,"spread":false},{"title":"003.jpg <span style='color:#111;'> 109.59KB </span>","children":null,"spread":false}],"spread":true},{"title":"Screenshots","children":[{"title":"TrainHist.png <span style='color:#111;'> 6.71KB </span>","children":null,"spread":false},{"title":"Normalized.png <span style='color:#111;'> 25.48KB </span>","children":null,"spread":false},{"title":"Valid.png <span style='color:#111;'> 27.90KB </span>","children":null,"spread":false},{"title":"TopSoft.png <span style='color:#111;'> 59.40KB </span>","children":null,"spread":false},{"title":"TestHist.png <span style='color:#111;'> 6.11KB </span>","children":null,"spread":false},{"title":"NewImg.png <span style='color:#111;'> 29.51KB </span>","children":null,"spread":false},{"title":"Train.png <span style='color:#111;'> 29.18KB </span>","children":null,"spread":false},{"title":"ValidHist.png <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false},{"title":"cm.png <span style='color:#111;'> 7.71KB </span>","children":null,"spread":false},{"title":"Test.png <span style='color:#111;'> 27.08KB </span>","children":null,"spread":false},{"title":"Gray.png <span style='color:#111;'> 22.28KB </span>","children":null,"spread":false},{"title":"VGGNet.png <span style='color:#111;'> 19.65KB </span>","children":null,"spread":false},{"title":"Equalized.png <span style='color:#111;'> 23.77KB </span>","children":null,"spread":false},{"title":"LeNet.png <span style='color:#111;'> 71.40KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明