基于MATLAB的数据挖掘实验

上传者: wower063 | 上传时间: 2019-12-21 21:56:26 | 文件大小: 2.89MB | 文件类型: rar
基于Matlab的数据挖掘实验,主要适用于数据挖掘课程中关于矩阵实验的练习提升。

文件下载

资源详情

[{"title":"( 72 个子文件 2.89MB ) 基于MATLAB的数据挖掘实验","children":[{"title":"exp","children":[{"title":"mlclass-ex6","children":[{"title":"ex6data2.mat <span style='color:#111;'> 7.43KB </span>","children":null,"spread":false},{"title":"emailFeatures.m <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"ex6_spam.m <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"spamSample2.txt <span style='color:#111;'> 245B </span>","children":null,"spread":false},{"title":"emailSample1.txt <span style='color:#111;'> 393B </span>","children":null,"spread":false},{"title":"linearKernel.m <span style='color:#111;'> 323B </span>","children":null,"spread":false},{"title":"submitWeb.m <span style='color:#111;'> 10.00KB </span>","children":null,"spread":false},{"title":"ex6data3.mat <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"emailSample2.txt <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"porterStemmer.m <span style='color:#111;'> 9.67KB </span>","children":null,"spread":false},{"title":"vocab.txt <span style='color:#111;'> 19.77KB </span>","children":null,"spread":false},{"title":"getVocabList.m <span style='color:#111;'> 761B </span>","children":null,"spread":false},{"title":"readFile.m <span style='color:#111;'> 396B </span>","children":null,"spread":false},{"title":"plotData.m <span style='color:#111;'> 569B </span>","children":null,"spread":false},{"title":"svmPredict.m <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"gaussianKernel.m <span style='color:#111;'> 726B </span>","children":null,"spread":false},{"title":"visualizeBoundary.m <span style='color:#111;'> 734B </span>","children":null,"spread":false},{"title":"visualizeBoundaryLinear.m <span style='color:#111;'> 410B </span>","children":null,"spread":false},{"title":"svmTrain.m <span style='color:#111;'> 5.82KB </span>","children":null,"spread":false},{"title":"dataset3Params.m <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"processEmail.m <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"spamSample1.txt <span style='color:#111;'> 655B </span>","children":null,"spread":false},{"title":"processEmail.asv <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"ex6.m <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"spamTrain.mat <span style='color:#111;'> 418.76KB </span>","children":null,"spread":false},{"title":"submit.m <span style='color:#111;'> 8.44KB </span>","children":null,"spread":false},{"title":"dataset3Params.asv <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"spamTest.mat <span style='color:#111;'> 110.08KB </span>","children":null,"spread":false},{"title":"ex6data1.mat <span style='color:#111;'> 981B </span>","children":null,"spread":false}],"spread":false},{"title":"mlclass-ex1","children":[{"title":"featureNormalize.asv <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"gradientDescent.m <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"submitWeb.m <span style='color:#111;'> 10.48KB </span>","children":null,"spread":false},{"title":"ex1.m <span style='color:#111;'> 3.36KB </span>","children":null,"spread":false},{"title":"gradientDescent.asv <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"featureNormalize.m <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"gradientDescentMulti.m <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"computeCost.m <span style='color:#111;'> 672B </span>","children":null,"spread":false},{"title":"ex1_multi.m <span style='color:#111;'> 4.35KB </span>","children":null,"spread":false},{"title":"plotData.m <span style='color:#111;'> 956B </span>","children":null,"spread":false},{"title":"ex1data2.txt <span style='color:#111;'> 657B </span>","children":null,"spread":false},{"title":"ex1data1.txt <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"normalEqn.asv <span style='color:#111;'> 655B </span>","children":null,"spread":false},{"title":"normalEqn.m <span style='color:#111;'> 646B </span>","children":null,"spread":false},{"title":"computeCostMulti.m <span style='color:#111;'> 711B </span>","children":null,"spread":false},{"title":"computeCostMulti.asv <span style='color:#111;'> 711B </span>","children":null,"spread":false},{"title":"submit.m <span style='color:#111;'> 8.91KB </span>","children":null,"spread":false},{"title":"gradientDescentMulti.asv <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"warmUpExercise.m <span style='color:#111;'> 517B </span>","children":null,"spread":false}],"spread":false},{"title":"ex1.pdf <span style='color:#111;'> 505.22KB </span>","children":null,"spread":false},{"title":"mlclass-ex5","children":[{"title":"polyFeatures.asv <span style='color:#111;'> 711B </span>","children":null,"spread":false},{"title":"polyFeatures.m <span style='color:#111;'> 711B </span>","children":null,"spread":false},{"title":"submitWeb.m <span style='color:#111;'> 10.37KB </span>","children":null,"spread":false},{"title":"ex5.asv <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false},{"title":"featureNormalize.m <span style='color:#111;'> 510B </span>","children":null,"spread":false},{"title":"ex5data1.mat <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"ex5.m <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false},{"title":"learningCurve.m <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"validationCurve.m <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"trainLinearReg.m <span style='color:#111;'> 714B </span>","children":null,"spread":false},{"title":"submit.m <span style='color:#111;'> 8.80KB </span>","children":null,"spread":false},{"title":"linearRegCostFunction.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"learningCurve.asv <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"validationCurve.asv <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"linearRegCostFunction.asv <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"fmincg.m <span style='color:#111;'> 8.54KB </span>","children":null,"spread":false},{"title":"plotFit.m <span style='color:#111;'> 804B </span>","children":null,"spread":false}],"spread":false},{"title":"ex6.pdf <span style='color:#111;'> 352.06KB </span>","children":null,"spread":false},{"title":"mlclass-ex5(要交).zip <span style='color:#111;'> 126.29KB </span>","children":null,"spread":false},{"title":"mlclass-ex1(不用交).zip <span style='color:#111;'> 467.09KB </span>","children":null,"spread":false},{"title":"ex5.pdf <span style='color:#111;'> 137.60KB </span>","children":null,"spread":false},{"title":"mlclass-ex6(要交).zip <span style='color:#111;'> 894.24KB </span>","children":null,"spread":false},{"title":"Thumbs.db <span style='color:#111;'> 24.50KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

  • shuzhifenxike :
    谢谢楼主分享,很好的学习材料
    2014-04-17
  • frouna :
    对我没有用
    2013-01-20

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明