2021清华大学《高级机器学习》课件和报告_高级机器学习和专家报告

上传者: wenyusuran | 上传时间: 2021-08-05 11:01:40 | 文件大小: 265.34MB | 文件类型: ZIP
2021清华大学《高级机器学习》课件和报告_高级机器学习和专家报告

文件下载

资源详情

[{"title":"( 27 个子文件 265.34MB ) 2021清华大学《高级机器学习》课件和报告_高级机器学习和专家报告","children":[{"title":"2021清华大学《高级机器学习》课件和报告_高级机器学习和专家报告","children":[{"title":"A8.2-Representation_Learning.pdf <span style='color:#111;'> 9.79MB </span>","children":null,"spread":false},{"title":"A8.1-Autoencoders.pdf <span style='color:#111;'> 8.70MB </span>","children":null,"spread":false},{"title":"A2.1-SVM-update-2.pdf <span style='color:#111;'> 9.99MB </span>","children":null,"spread":false},{"title":"A3.1-Unsupervised Learning-update.pdf <span style='color:#111;'> 2.63MB </span>","children":null,"spread":false},{"title":"A5.1-Graphical Model.pdf <span style='color:#111;'> 15.34MB </span>","children":null,"spread":false},{"title":"20200513-唐建-LogicalReasoningGNN-Tsinghua-2020.5.13.pdf <span style='color:#111;'> 16.87MB </span>","children":null,"spread":false},{"title":"A1.1-outline-1.pdf <span style='color:#111;'> 5.76MB </span>","children":null,"spread":false},{"title":"A5.2-Approximate Inference.pdf <span style='color:#111;'> 2.04MB </span>","children":null,"spread":false},{"title":"A7.1-CNN_new.pdf <span style='color:#111;'> 16.08MB </span>","children":null,"spread":false},{"title":"A11.2-GAN.pdf <span style='color:#111;'> 17.50MB </span>","children":null,"spread":false},{"title":"A12-Online_Learning_short_2020.pdf <span style='color:#111;'> 5.65MB </span>","children":null,"spread":false},{"title":"A10-AutoML_new.pdf <span style='color:#111;'> 15.95MB </span>","children":null,"spread":false},{"title":"A4.1-Matrix Factorization-update-1.pdf <span style='color:#111;'> 15.56MB </span>","children":null,"spread":false},{"title":"A6-Ensemble.pdf <span style='color:#111;'> 8.47MB </span>","children":null,"spread":false},{"title":"20200429-李沐-automl.pdf <span style='color:#111;'> 5.93MB </span>","children":null,"spread":false},{"title":"A9-Representation Learning for Networks.pdf <span style='color:#111;'> 18.21MB </span>","children":null,"spread":false},{"title":"A14-BERTology.pdf <span style='color:#111;'> 4.35MB </span>","children":null,"spread":false},{"title":"A3.2-Topic Model-update.pdf <span style='color:#111;'> 5.74MB </span>","children":null,"spread":false},{"title":"A11.1-adversarialLearning.pdf <span style='color:#111;'> 4.39MB </span>","children":null,"spread":false},{"title":"A4.2-Non_parametric_Bayesian_Models-update-1.pdf <span style='color:#111;'> 737.95KB </span>","children":null,"spread":false},{"title":"20200408-李航-Sequence to Sequence Models.pdf <span style='color:#111;'> 1.33MB </span>","children":null,"spread":false},{"title":"20200429-李磊-learning deep latent models for text sequences - Tsinghua 2020.4.29.pdf <span style='color:#111;'> 19.05MB </span>","children":null,"spread":false},{"title":"A7. 2-Sequence_Modeling__Recurrent_and_Recursive_Nets_2019 (3).pdf <span style='color:#111;'> 10.96MB </span>","children":null,"spread":false},{"title":"A13-RL_short_2020.pdf <span style='color:#111;'> 23.68MB </span>","children":null,"spread":false},{"title":"A2.2-DNN-update-2.pdf <span style='color:#111;'> 3.72MB </span>","children":null,"spread":false},{"title":"A16-Beyond-GNN.pdf <span style='color:#111;'> 18.21MB </span>","children":null,"spread":false},{"title":"A15-DL-Reasoning.pdf <span style='color:#111;'> 18.03MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明