图像处理源码-ClipBERT-通过稀疏采样进行视频和语言学习

上传者: wenyusuran | 上传时间: 2021-07-05 20:01:46 | 文件大小: 910KB | 文件类型: ZIP
通用框架CLIPBERT,该框架通过使用稀疏采样(仅使用一个视频中的一个或几个稀疏采样的短片)来实现可负担的视频和语言任务的端到端学习。

文件下载

资源详情

[{"title":"( 62 个子文件 910KB ) 图像处理源码-ClipBERT-通过稀疏采样进行视频和语言学习","children":[{"title":"图像处理源码-ClipBERT-通过稀疏采样进行视频和语言学习","children":[{"title":"ClipBERT-main","children":[{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"src","children":[{"title":"tasks","children":[{"title":"run_vqa.py <span style='color:#111;'> 21.24KB </span>","children":null,"spread":false},{"title":"run_msrvtt_mc.py <span style='color:#111;'> 11.59KB </span>","children":null,"spread":false},{"title":"run_video_qa.py <span style='color:#111;'> 27.57KB </span>","children":null,"spread":false},{"title":"run_video_retrieval.py <span style='color:#111;'> 31.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"pretrain","children":[{"title":"run_pretrain.py <span style='color:#111;'> 18.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"optimization","children":[{"title":"utils.py <span style='color:#111;'> 6.55KB </span>","children":null,"spread":false},{"title":"adamw.py <span style='color:#111;'> 4.30KB </span>","children":null,"spread":false},{"title":"sched.py <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false}],"spread":true},{"title":"preprocessing","children":[{"title":"lmdb_utils.py <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"file2lmdb.py <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false}],"spread":true},{"title":"modeling","children":[{"title":"grid_feat.py <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false},{"title":"transformers.py <span style='color:#111;'> 21.84KB </span>","children":null,"spread":false},{"title":"e2e_model.py <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"modeling.py <span style='color:#111;'> 21.00KB </span>","children":null,"spread":false},{"title":"grid_feats","children":[{"title":"build_loader.py <span style='color:#111;'> 3.78KB </span>","children":null,"spread":false},{"title":"roi_heads.py <span style='color:#111;'> 9.24KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 340B </span>","children":null,"spread":false},{"title":"dataset_mapper.py <span style='color:#111;'> 6.41KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"visual_genome.py <span style='color:#111;'> 5.54KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"configs","children":[{"title":"base_model.json <span style='color:#111;'> 586B </span>","children":null,"spread":false},{"title":"detectron2_configs","children":[{"title":"R-50-grid.yaml <span style='color:#111;'> 124B </span>","children":null,"spread":false},{"title":"Base-RCNN-grid.yaml <span style='color:#111;'> 828B </span>","children":null,"spread":false}],"spread":true},{"title":"msrvtt_qa_base_resnet50.json <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"msrvtt_ret_base_resnet50.json <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"anet_ret_base_resnet50.json <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"tgif_qa_action_base_resnet50.json <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"tgif_qa_transition_base_resnet50.json <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"tgif_qa_frameqa_base_resnet50.json <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 18.46KB </span>","children":null,"spread":false},{"title":"didemo_ret_base_resnet50.json <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"vqa_base_resnet50.json <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"pretrain_image_text_base_resnet50_mlm_itm.json <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false}],"spread":false},{"title":"utils","children":[{"title":"logger.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"misc.py <span style='color:#111;'> 583B </span>","children":null,"spread":false},{"title":"load_save.py <span style='color:#111;'> 13.94KB </span>","children":null,"spread":false},{"title":"basic_utils.py <span style='color:#111;'> 5.44KB </span>","children":null,"spread":false},{"title":"distributed.py <span style='color:#111;'> 6.55KB </span>","children":null,"spread":false}],"spread":true},{"title":"datasets","children":[{"title":"dataset_video_qa.py <span style='color:#111;'> 9.62KB </span>","children":null,"spread":false},{"title":"dataset_video_retrieval.py <span style='color:#111;'> 14.59KB </span>","children":null,"spread":false},{"title":"dataloader.py <span style='color:#111;'> 5.61KB </span>","children":null,"spread":false},{"title":"data_utils.py <span style='color:#111;'> 13.58KB </span>","children":null,"spread":false},{"title":"dataset_pretrain.py <span style='color:#111;'> 6.04KB </span>","children":null,"spread":false},{"title":"decoder.py <span style='color:#111;'> 11.11KB </span>","children":null,"spread":false},{"title":"dataset_vqa.py <span style='color:#111;'> 5.67KB </span>","children":null,"spread":false},{"title":"dataset_base.py <span style='color:#111;'> 11.66KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"launch_container.sh <span style='color:#111;'> 691B </span>","children":null,"spread":false},{"title":"docker","children":[{"title":"Dockerfile <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 192B </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 609B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 11.08KB </span>","children":null,"spread":false},{"title":"scripts","children":[{"title":"download_vqa.sh <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"download_msrvtt.sh <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"download_didemo.sh <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"download_tgif_qa.sh <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"download_pretrained.sh <span style='color:#111;'> 743B </span>","children":null,"spread":false},{"title":"download_coco_vg.sh <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"download_anet.sh <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"setup.sh <span style='color:#111;'> 165B </span>","children":null,"spread":false}],"spread":true},{"title":"通过稀疏采样进行视频和语言学习-Less is More CLIPBERT for Video-and-Language Learning via Sparse Sampling.pdf <span style='color:#111;'> 949.96KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明