扩散模型diffusion model用于图像恢复完整可运行代码,附详细实验操作流程

上传者: wenyuanbo | 上传时间: 2023-03-10 13:36:26 | 文件大小: 29KB | 文件类型: RAR
1. 基于扩散模型实现的图像恢复代码,只需要修改数据集路径就可以在去雨、去雾、去雪等多个图像恢复任务上直接使用; 2. 附有详细的实验操作流程,以及参数路径等修改方法; 3. 代码训练和测试完整可运行; 4. 对于有需求的可以直接拿来在自己的任务上训练和测试; 5. 附有一些注释,其他地方不懂的可以参考博客https://blog.csdn.net/Wenyuanbo/article/details/128959995学习; 6. 附有 python 版本常用的 psnr 和 ssim 计算方法; 7. 敲代码不易,还请多多支持; 8. 若经济有限可以私聊我。

文件下载

资源详情

[{"title":"( 30 个子文件 29KB ) 扩散模型diffusion model用于图像恢复完整可运行代码,附详细实验操作流程","children":[{"title":"IRDM","children":[{"title":"pretrained_model","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 4.82KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"__init__.py <span style='color:#111;'> 86B </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 6.57KB </span>","children":null,"spread":false},{"title":"logging.py <span style='color:#111;'> 588B </span>","children":null,"spread":false},{"title":"optimize.py <span style='color:#111;'> 673B </span>","children":null,"spread":false},{"title":"sampling.py <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"sampling.cpython-38.pyc <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false},{"title":"logging.cpython-38.pyc <span style='color:#111;'> 835B </span>","children":null,"spread":false},{"title":"optimize.cpython-38.pyc <span style='color:#111;'> 674B </span>","children":null,"spread":false},{"title":"__init__.cpython-38.pyc <span style='color:#111;'> 215B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"calculate_psnr_ssim.py <span style='color:#111;'> 990B </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"workspace.xml <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 964B </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 267B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"IRDM.iml <span style='color:#111;'> 568B </span>","children":null,"spread":false}],"spread":true},{"title":"eval_diffusion.py <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"train_diffusion.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"configs.yml <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"__init__.py <span style='color:#111;'> 58B </span>","children":null,"spread":false},{"title":"ddm.py <span style='color:#111;'> 8.59KB </span>","children":null,"spread":false},{"title":"restoration.py <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"unet.py <span style='color:#111;'> 12.01KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"restoration.cpython-38.pyc <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":"unet.cpython-38.pyc <span style='color:#111;'> 7.09KB </span>","children":null,"spread":false},{"title":"ddm.cpython-38.pyc <span style='color:#111;'> 7.38KB </span>","children":null,"spread":false},{"title":"__init__.cpython-38.pyc <span style='color:#111;'> 191B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"validation","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明