图像过滤和混合图像.gz

上传者: 55771290 | 上传时间: 2023-05-18 16:15:59 | 文件大小: 3.05MB | 文件类型: GZ
实验原理: 这项任务的目标是编写一个图像过滤功能,并使用它来创建混合图像,使用Oliva,Torralba和Schyns 的SIGGRAPH 2006 论文的简化版本。 混合图像是静态图像,其在解释中随观看距离而变化。基本思想是高频率在可用时倾向于支配感知,但是,在远处,只能看到信号的低频(平滑)部分。通过将一个图像的高频部分与另一个图像的低频部分混合,您可以获得混合图像,从而在不同距离处产生不同的解释。 实验目的: 对不同图像分别进行高通和低通滤波,融合图片 实验内容: 图像过滤:图像过滤(或卷积)是一种基本的图像处理工具。您将编写自己的函数以从头开始实现图像过滤。更具体地说,您将实现 在OpenCV库中my_imfilter()模仿该filter2D函数。如上所述student.py,过滤算法必须 支持灰度和彩色图像 支持任意形状的滤镜,只要两个尺寸都是奇数(例如7x9滤镜但不是4x5滤镜) 用零填充输入图像或反射图像内容和 返回与输入图像具有相同分辨率的滤波图像。 混合图像:混合图像是一个图像的低通滤波版本和第二图像的高通滤波版本的总和。有一个自由参数,其可被调谐为

文件下载

资源详情

[{"title":"( 29 个子文件 3.05MB ) 图像过滤和混合图像.gz","children":[{"title":"imagefiltering-blending","children":[{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"createSubmissionZip.py <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"pro1实验报告.pdf <span style='color:#111;'> 512.36KB </span>","children":null,"spread":false},{"title":"questions","children":[{"title":"Project1_QuestionsTemplate.tex <span style='color:#111;'> 4.94KB </span>","children":null,"spread":false},{"title":"RISDance.jpg <span style='color:#111;'> 1.86MB </span>","children":null,"spread":false}],"spread":true},{"title":"pro1实验报告.docx <span style='color:#111;'> 590.05KB </span>","children":null,"spread":false},{"title":"writeup","children":[{"title":"writeup.tex <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"placeholder.jpg <span style='color:#111;'> 8.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"results","children":[{"title":"high_frequencies.jpg <span style='color:#111;'> 8.29KB </span>","children":null,"spread":false},{"title":"myfilter1","children":[{"title":"high_frequencies.jpg <span style='color:#111;'> 22.42KB </span>","children":null,"spread":false},{"title":"hybrid_image_scales.jpg <span style='color:#111;'> 35.32KB </span>","children":null,"spread":false},{"title":"low_frequencies.jpg <span style='color:#111;'> 8.65KB </span>","children":null,"spread":false},{"title":"hybrid_image.jpg <span style='color:#111;'> 22.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"myfilter","children":[{"title":"high_frequencies.jpg <span style='color:#111;'> 22.63KB </span>","children":null,"spread":false},{"title":"hybrid_image_scales.jpg <span style='color:#111;'> 37.23KB </span>","children":null,"spread":false},{"title":"low_frequencies.jpg <span style='color:#111;'> 9.70KB </span>","children":null,"spread":false},{"title":"hybrid_image.jpg <span style='color:#111;'> 24.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"hybrid_image_scales.jpg <span style='color:#111;'> 15.61KB </span>","children":null,"spread":false},{"title":"low_frequencies.jpg <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false},{"title":"cv2","children":[{"title":"high_frequencies.jpg <span style='color:#111;'> 21.68KB </span>","children":null,"spread":false},{"title":"hybrid_image_scales.jpg <span style='color:#111;'> 34.90KB </span>","children":null,"spread":false},{"title":"low_frequencies.jpg <span style='color:#111;'> 8.13KB </span>","children":null,"spread":false},{"title":"hybrid_image.jpg <span style='color:#111;'> 22.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"hybrid_image.jpg <span style='color:#111;'> 8.64KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 10.22KB </span>","children":null,"spread":false},{"title":"code","children":[{"title":"helpers.py <span style='color:#111;'> 9.54KB </span>","children":null,"spread":false},{"title":"proj1_part1.py <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"helpers.cpython-37.pyc <span style='color:#111;'> 5.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"proj1_part2.py <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明