Python 实现LSB算法进行信息隐藏 包含空域与变换域 JPEG信息隐藏算法 对PDF文件进行信息隐藏 基于卷积神经网络的隐

上传者: 55771290 | 上传时间: 2023-03-01 15:14:34 | 文件大小: 304.02MB | 文件类型: ZIP
Python 实现LSB算法进行信息隐藏 包含空域与变换域 JPEG信息隐藏算法 对PDF文件进行信息隐藏 基于卷积神经网络的隐写分析 Matlab SRM、SCA隐写分析• 空域编码是指在图像空间域进行编码,也就是直接针对图像像素进行编码 • 对像素进行编码,如 LSB 算法,主要有下面两种方式 ◦ 光栅格式 ◦ 调色板格式 GIF(graphics interchange format) • 一个图像编码标准往往包括多类编码方法,一个图像仅仅是其一类方法的实例。例如,常见的 BMP(Bitmap)、 TIFF( Tagged Image File Format)、 PNG(Portable Network Graphics)均支持光栅格式与调色板格式编码,对这两种格式 编码分别又支持多种具体编码方法 LSB 隐写算法 --- • LSB 隐写是最基础、最简单的隐写方法,具有容量大、嵌入速度快、对载体图像质量影响小的特点 • LSB 的大意就是最低比特位隐写。我们将深度为 8 的 BMP 图像,分为 8 个二值平面(位平面),我们将待嵌入的信息(info)直接写到最低

文件下载

资源详情

[{"title":"( 136 个子文件 304.02MB ) Python 实现LSB算法进行信息隐藏 包含空域与变换域 JPEG信息隐藏算法 对PDF文件进行信息隐藏 基于卷积神经网络的隐","children":[{"title":"cnn_train_dag.m <span style='color:#111;'> 15.07KB </span>","children":null,"spread":false},{"title":"cnn_test_dag.m <span style='color:#111;'> 10.03KB </span>","children":null,"spread":false},{"title":"cnn_bnrefine_dag.m <span style='color:#111;'> 8.36KB </span>","children":null,"spread":false},{"title":"cnn_phaseaware_PNet_init.m <span style='color:#111;'> 10.87KB </span>","children":null,"spread":false},{"title":"test_phaseaware.m <span style='color:#111;'> 2.48KB </span>","children":null,"spread":false},{"title":"bn_refine_phaseaware.m <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"PhaseAware_PNet_Config.png <span style='color:#111;'> 190.71KB </span>","children":null,"spread":false},{"title":"cnn_phaseaware.m <span style='color:#111;'> 4.87KB </span>","children":null,"spread":false},{"title":"cnn_phaseaware_imdb_setup.m <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false},{"title":"cnn_phaseaware_VNet_init.m <span style='color:#111;'> 10.88KB </span>","children":null,"spread":false},{"title":"PhaseAware_VNet_Config.png <span style='color:#111;'> 191.29KB </span>","children":null,"spread":false},{"title":"vl_nnphasesplit.m <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"PhaseSplit.m <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"TanH.m <span style='color:#111;'> 327B </span>","children":null,"spread":false},{"title":"fromSimpleNN.m <span style='color:#111;'> 7.33KB </span>","children":null,"spread":false},{"title":"BatchNorm.m <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":"Abs.m <span style='color:#111;'> 324B </span>","children":null,"spread":false},{"title":"vl_nntanh.m <span style='color:#111;'> 636B </span>","children":null,"spread":false},{"title":"nntanh.m <span style='color:#111;'> 489B </span>","children":null,"spread":false},{"title":"nnphasesplit.m <span style='color:#111;'> 503B </span>","children":null,"spread":false},{"title":"nnabs.m <span style='color:#111;'> 855B </span>","children":null,"spread":false},{"title":"vl_nnabs.m <span style='color:#111;'> 557B </span>","children":null,"spread":false},{"title":"readme.docx <span style='color:#111;'> 19.35KB </span>","children":null,"spread":false},{"title":"HG_IMDB_JUNI04_Create.ipynb <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"phase_aware_net_train.prototxt <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false},{"title":"readme.docx <span style='color:#111;'> 18.82KB </span>","children":null,"spread":false},{"title":"split_by_phase_layer.cpp <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"AugStegoDataLayer.py <span style='color:#111;'> 5.24KB </span>","children":null,"spread":false},{"title":"split_by_phase_layer.hpp <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false},{"title":"phase_aware_net_solver.prototxt <span style='color:#111;'> 368B </span>","children":null,"spread":false},{"title":"PhaseAwareNet.ipynb <span style='color:#111;'> 1.29MB </span>","children":null,"spread":false},{"title":"split_by_phase_layer.cu <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"test_split_by_phase_layer.cpp <span style='color:#111;'> 4.08KB </span>","children":null,"spread":false},{"title":"Arbitrary_Size.pdf <span style='color:#111;'> 566.05KB </span>","children":null,"spread":false},{"title":"New_YeNet.pdf <span style='color:#111;'> 1.74MB </span>","children":null,"spread":false},{"title":"ALASKA.pdf <span style='color:#111;'> 968.33KB </span>","children":null,"spread":false},{"title":"nsF5.pdf <span style='color:#111;'> 165.31KB </span>","children":null,"spread":false},{"title":"Residual_Attention.pdf <span style='color:#111;'> 1.20MB </span>","children":null,"spread":false},{"title":"Adversarial_Embedding.pdf <span style='color:#111;'> 2.81MB </span>","children":null,"spread":false},{"title":"SRnet.pdf <span style='color:#111;'> 2.27MB </span>","children":null,"spread":false},{"title":"ensemble-doubleColumn.pdf <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false},{"title":"WISERNet.pdf <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false},{"title":"Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.pdf <span style='color:#111;'> 2.22MB </span>","children":null,"spread":false},{"title":"SRM.pdf <span style='color:#111;'> 725.64KB </span>","children":null,"spread":false},{"title":"STC2.pdf <span style='color:#111;'> 2.63MB </span>","children":null,"spread":false},{"title":"JRM.pdf <span style='color:#111;'> 557.99KB </span>","children":null,"spread":false},{"title":"UERD.pdf <span style='color:#111;'> 2.33MB </span>","children":null,"spread":false},{"title":"multi_size_image.pdf <span style='color:#111;'> 2.09MB </span>","children":null,"spread":false},{"title":"YeNet.pdf <span style='color:#111;'> 3.63MB </span>","children":null,"spread":false},{"title":"Pev10-Hugo.pdf <span style='color:#111;'> 354.11KB </span>","children":null,"spread":false},{"title":"diouf2014.pdf <span style='color:#111;'> 729.12KB </span>","children":null,"spread":false},{"title":"UNIWARD-EURASIP.pdf <span style='color:#111;'> 1.36MB </span>","children":null,"spread":false},{"title":"STC.pdf <span style='color:#111;'> 364.99KB </span>","children":null,"spread":false},{"title":"flag.txt <span style='color:#111;'> 11B </span>","children":null,"spread":false},{"title":"new.png <span style='color:#111;'> 160.38KB </span>","children":null,"spread":false},{"title":"old.png <span style='color:#111;'> 161.08KB </span>","children":null,"spread":false},{"title":"get_flag.txt <span style='color:#111;'> 11B </span>","children":null,"spread":false},{"title":"hide_info.py <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false},{"title":"get_info.py <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"一种新的基于PDF文档结构的信息隐藏算法_刘友继.caj <span style='color:#111;'> 117.25KB </span>","children":null,"spread":false},{"title":"基于PDF417条码的信息隐藏方法_赵博.caj <span style='color:#111;'> 171.50KB </span>","children":null,"spread":false},{"title":"文本载体信息隐藏及相关技术研究_蒋斌.caj <span style='color:#111;'> 2.46MB </span>","children":null,"spread":false},{"title":"文本信息隐藏及分析技术研究_眭新光.caj <span style='color:#111;'> 982.02KB </span>","children":null,"spread":false},{"title":"基于PDF文档的信息隐藏与检测_刘友继.caj <span style='color:#111;'> 58.59MB </span>","children":null,"spread":false},{"title":"隐写术理论与技术研究_刘星彤.caj <span style='color:#111;'> 1.72MB </span>","children":null,"spread":false},{"title":"基于PDF文本的信息隐藏技术_谷今杰.caj <span style='color:#111;'> 601.17KB </span>","children":null,"spread":false},{"title":"二维矢量图形表示典型媒体的内容安全算法_钟尚平.caj <span style='color:#111;'> 5.17MB </span>","children":null,"spread":false},{"title":"定位PDF电子发票篡改的认证水印算法研究_张旋.caj <span style='color:#111;'> 8.36MB </span>","children":null,"spread":false},{"title":"基于PDF文件的信息隐藏技术研究_黄思敏.caj <span style='color:#111;'> 1.30MB </span>","children":null,"spread":false},{"title":"基于PDF文档作为掩体的信息隐写方法_钟尚平.caj <span style='color:#111;'> 253.69KB </span>","children":null,"spread":false},{"title":"提高wbStego4性能的方法及其实现_钟尚平.caj <span style='color:#111;'> 349.59KB </span>","children":null,"spread":false},{"title":"PDF格式.md <span style='color:#111;'> 20.42KB </span>","children":null,"spread":false},{"title":"ensemble_training.m <span style='color:#111;'> 23.87KB </span>","children":null,"spread":false},{"title":"ensemble_testing.m <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false},{"title":"S_uniward_pro.m <span style='color:#111;'> 172B </span>","children":null,"spread":false},{"title":"1.pgm <span style='color:#111;'> 256.01KB </span>","children":null,"spread":false},{"title":"maxSRM.mexw64 <span style='color:#111;'> 177.00KB </span>","children":null,"spread":false},{"title":"maxSRM.mexw32 <span style='color:#111;'> 180.18KB </span>","children":null,"spread":false},{"title":"SubmodelConcatenation.m <span style='color:#111;'> 366B </span>","children":null,"spread":false},{"title":"S_UNIWARD.m <span style='color:#111;'> 7.20KB </span>","children":null,"spread":false},{"title":"new.png <span style='color:#111;'> 160.38KB </span>","children":null,"spread":false},{"title":"old.png <span style='color:#111;'> 161.08KB </span>","children":null,"spread":false},{"title":"F4.png <span style='color:#111;'> 21.23KB </span>","children":null,"spread":false},{"title":"Jsteg.png <span style='color:#111;'> 22.59KB </span>","children":null,"spread":false},{"title":"F3.png <span style='color:#111;'> 19.05KB </span>","children":null,"spread":false},{"title":"original.png <span style='color:#111;'> 21.99KB </span>","children":null,"spread":false},{"title":"Jpegprocess.png <span style='color:#111;'> 580.59KB </span>","children":null,"spread":false},{"title":"plot.py <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"Jsteg.py <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"SRNet_Example.ipynb <span style='color:#111;'> 4.20KB </span>","children":null,"spread":false},{"title":"SCA_SRNet_Example.ipynb <span style='color:#111;'> 6.85KB </span>","children":null,"spread":false},{"title":"generator.py <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"utils_multistep_lr.py <span style='color:#111;'> 11.02KB </span>","children":null,"spread":false},{"title":"queues.py <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false},{"title":"SRNet.py <span style='color:#111;'> 5.66KB </span>","children":null,"spread":false},{"title":"SCA_SRNet_Spatial.py <span style='color:#111;'> 6.81KB </span>","children":null,"spread":false},{"title":"SCA_SRNet_JPEG.py <span style='color:#111;'> 6.81KB </span>","children":null,"spread":false},{"title":"SCA_SRNet.py <span style='color:#111;'> 4.94KB </span>","children":null,"spread":false},{"title":"HILL.m <span style='color:#111;'> 3.78KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明