频域滤波处理的matlab实现

上传者: 45807790 | 上传时间: 2022-06-08 19:12:10 | 文件大小: 6.07MB | 文件类型: RAR
对三张图的灰度图做傅里叶变换,输出他们的幅值谱,要求频谱原点在图像中心,然后对sobel(x和y方向)、高斯滤波、拉普拉斯滤波器(都是3x3)补零做他们的幅值谱,同样输出中心为零点的图像大小的幅值谱,共4张图像; 然后输出以上滤波器频谱和原始图像以及高斯噪声图像的频谱的乘积后的幅值谱,共8张图; 最后进行傅里叶反变换,得到滤波后的图像,共8张图。

文件下载

资源详情

[{"title":"( 27 个子文件 6.07MB ) 频域滤波处理的matlab实现","children":[{"title":"频域滤波处理的matlab实现","children":[{"title":"八张滤波处理后的幅值谱","children":[{"title":"gaussian_gaussian_f.png <span style='color:#111;'> 93.55KB </span>","children":null,"spread":false},{"title":"laplacian_gaussian_f.png <span style='color:#111;'> 78.30KB </span>","children":null,"spread":false},{"title":"sobely_gaussian_f.png <span style='color:#111;'> 109.25KB </span>","children":null,"spread":false},{"title":"sobelx_origin_f.png <span style='color:#111;'> 140.71KB </span>","children":null,"spread":false},{"title":"laplacian_origin_f.png <span style='color:#111;'> 86.88KB </span>","children":null,"spread":false},{"title":"sobelx_gaussian_f.png <span style='color:#111;'> 109.92KB </span>","children":null,"spread":false},{"title":"sobely_origin_f.png <span style='color:#111;'> 142.39KB </span>","children":null,"spread":false},{"title":"gaussian_origin_f.png <span style='color:#111;'> 159.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"task2.m <span style='color:#111;'> 5.75KB </span>","children":null,"spread":false},{"title":"origin_image.png <span style='color:#111;'> 767.41KB </span>","children":null,"spread":false},{"title":"四张滤波器的幅值谱","children":[{"title":"gaussian_filter_f.png <span style='color:#111;'> 25.13KB </span>","children":null,"spread":false},{"title":"sobely_filter_f.png <span style='color:#111;'> 24.43KB </span>","children":null,"spread":false},{"title":"laplacian_filter_f.png <span style='color:#111;'> 9.51KB </span>","children":null,"spread":false},{"title":"sobelx_filter_f.png <span style='color:#111;'> 16.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"三张原图的幅值谱","children":[{"title":"image_origin_f.png <span style='color:#111;'> 123.36KB </span>","children":null,"spread":false},{"title":"image_pepper_noise_f.png <span style='color:#111;'> 83.44KB </span>","children":null,"spread":false},{"title":"image_gaussian_noise_f.png <span style='color:#111;'> 85.12KB </span>","children":null,"spread":false}],"spread":true},{"title":"八张滤波处理后的图像","children":[{"title":"sobelx_origin.png <span style='color:#111;'> 222.68KB </span>","children":null,"spread":false},{"title":"laplacian_gaussian.png <span style='color:#111;'> 267.00KB </span>","children":null,"spread":false},{"title":"sobely_gaussian.png <span style='color:#111;'> 306.03KB </span>","children":null,"spread":false},{"title":"gaussian_gaussian.png <span style='color:#111;'> 322.46KB </span>","children":null,"spread":false},{"title":"sobely_origin.png <span style='color:#111;'> 208.07KB </span>","children":null,"spread":false},{"title":"gaussian_origin.png <span style='color:#111;'> 203.33KB </span>","children":null,"spread":false},{"title":"sobelx_gaussian.png <span style='color:#111;'> 312.47KB </span>","children":null,"spread":false},{"title":"laplacian_origin.png <span style='color:#111;'> 222.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"pepper_noise.png <span style='color:#111;'> 861.40KB </span>","children":null,"spread":false},{"title":"gaussian_noise.png <span style='color:#111;'> 1.20MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明