[{"title":"( 56 个子文件 9.43MB ) 计算方法数值计算实验上机报告(包括题目、C++源码、流程图、实验分析、总结).zip","children":[{"title":"第五章插值法","children":[{"title":"分段线性插值.cpp <span style='color:#111;'> 980B </span>","children":null,"spread":false},{"title":"分段线性插值.png <span style='color:#111;'> 31.33KB </span>","children":null,"spread":false},{"title":"牛顿插值法.cpp <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"拉格朗日插值法.cpp <span style='color:#111;'> 972B </span>","children":null,"spread":false},{"title":"拉格朗日插值.png <span style='color:#111;'> 27.71KB </span>","children":null,"spread":false},{"title":"牛顿插值法.exe <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"拉格朗日插值法.exe <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"插值法.drawio <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false},{"title":"分段线性插值.exe <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"牛顿插值.png <span style='color:#111;'> 31.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"实验上机报告","children":[{"title":"3 插值法实验上机报告.docx <span style='color:#111;'> 285.74KB </span>","children":null,"spread":false},{"title":"4 数值积分实验.pdf <span style='color:#111;'> 90.09KB </span>","children":null,"spread":false},{"title":"3 插值法实验.pdf <span style='color:#111;'> 96.74KB </span>","children":null,"spread":false},{"title":"2 线性方程组的直接法实验.pdf <span style='color:#111;'> 93.93KB </span>","children":null,"spread":false},{"title":"1 非线性方程求根实验.pdf <span style='color:#111;'> 107.30KB </span>","children":null,"spread":false},{"title":"1 非线性方程求根实验上机报告.docx <span style='color:#111;'> 320.43KB </span>","children":null,"spread":false},{"title":"2 线性方程组的直接法实验上机报告.docx <span style='color:#111;'> 166.46KB </span>","children":null,"spread":false},{"title":"4 数值积分实验上机报告.docx <span style='color:#111;'> 229.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"第三章直接法解方程组","children":[{"title":"直接法解方程组.drawio <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"高斯--若尔当消元.exe <span style='color:#111;'> 1.99MB </span>","children":null,"spread":false},{"title":"普通高斯消元.cpp <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"全主元素高斯消元.cpp <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"列主元素高斯消元.cpp <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"列主元素高斯消元.exe <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"标度化列主元消元.cpp <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"高斯顺序消去法.png <span style='color:#111;'> 37.16KB </span>","children":null,"spread":false},{"title":"多利特分解法.exe <span style='color:#111;'> 1.91MB </span>","children":null,"spread":false},{"title":"标度化列主元消元.exe <span style='color:#111;'> 1.92MB </span>","children":null,"spread":false},{"title":"普通高斯消元.exe <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"高斯列主元消去法.png <span style='color:#111;'> 22.25KB </span>","children":null,"spread":false},{"title":"全主元素高斯消元.exe <span style='color:#111;'> 1.92MB </span>","children":null,"spread":false},{"title":"高斯--若尔当消元.cpp <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"多利特分解法.png <span style='color:#111;'> 22.25KB </span>","children":null,"spread":false},{"title":"多利特分解法.cpp <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false}],"spread":false},{"title":"第二章求解非线性方程","children":[{"title":"牛顿迭代法.exe <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"二分法.exe <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"割线法.exe <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"牛顿迭代法.cpp <span style='color:#111;'> 888B </span>","children":null,"spread":false},{"title":"割线法.cpp <span style='color:#111;'> 785B </span>","children":null,"spread":false},{"title":"二分法.cpp <span style='color:#111;'> 868B </span>","children":null,"spread":false},{"title":"简单迭代法.exe <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"简单迭代法.cpp <span style='color:#111;'> 797B </span>","children":null,"spread":false}],"spread":true},{"title":"第六章数值积分","children":[{"title":"变步长求积.cpp <span style='color:#111;'> 686B </span>","children":null,"spread":false},{"title":"复合Simpson求积.png <span style='color:#111;'> 32.93KB </span>","children":null,"spread":false},{"title":"变步长求积.exe <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"复合梯形求积.exe <span style='color:#111;'> 1.91MB </span>","children":null,"spread":false},{"title":"复合Simpson求积.exe <span style='color:#111;'> 1.91MB </span>","children":null,"spread":false},{"title":"复合梯形求积.png <span style='color:#111;'> 21.30KB </span>","children":null,"spread":false},{"title":"变步长求积.png <span style='color:#111;'> 28.63KB </span>","children":null,"spread":false},{"title":"数值积分.drawio <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"复合Simpson求积.cpp <span style='color:#111;'> 737B </span>","children":null,"spread":false},{"title":"复合梯形求积.cpp <span style='color:#111;'> 652B </span>","children":null,"spread":false}],"spread":true},{"title":"第四章迭代法解方程组","children":[{"title":"高斯-赛德尔.exe <span style='color:#111;'> 1.92MB </span>","children":null,"spread":false},{"title":"高斯-赛德尔.cpp <span style='color:#111;'> 766B </span>","children":null,"spread":false},{"title":"雅可比迭代.exe <span style='color:#111;'> 1.92MB </span>","children":null,"spread":false},{"title":"雅可比迭代.cpp <span style='color:#111;'> 780B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]