多类别语义分割C++实现(onnx部署)详细教程

上传者: 45665371 | 上传时间: 2025-12-31 11:06:58 | 文件大小: 222.97MB | 文件类型: ZIP
在本教程中,我们将深入探讨如何使用C++和OpenCV库实现多类别语义分割,并以ONNX模型作为部署基础。语义分割是计算机视觉领域的一个关键任务,它旨在为图像中的每个像素分配一个类别标签,例如区分天空、建筑、道路等。在本教程中,我们将使用`picture_Seg_test.cpp`作为示例代码,配合提供的OpenCV安装包`opencv-4.5.5-vc15.exe`来实现这一目标。 我们需要了解OpenCV库。OpenCV(开源计算机视觉库)是一个强大的工具,用于处理图像和视频数据。在这个项目中,OpenCV将用于读取、处理和显示图像,以及与ONNX模型进行交互。 1. **OpenCV安装**:`opencv-4.5.5-vc15.exe`是OpenCV 4.5.5版本的安装程序,适用于Visual Studio 14和15。安装完成后,需要配置环境变量,确保编译器能够找到相应的头文件和库文件。在C++项目中,我们还需要链接对应的库(如opencv_core、opencv_highgui等)。 2. **ONNX模型导入**:ONNX(Open Neural Network Exchange)是一种跨框架的模型交换格式,支持多种深度学习模型。在C++中,我们可以使用OpenCV的dnn模块来加载和运行ONNX模型。`picture_Seg_test.cpp`中,我们需要解析模型的结构,加载权重,并设置输入和输出层的名称。 3. **预处理步骤**:在运行模型之前,通常需要对输入图像进行预处理,例如调整尺寸、归一化像素值、填充边界等。这些操作可以确保输入符合模型的期望。 4. **模型执行**:使用OpenCV的`dnn::Net::forward()`函数执行模型,得到每个像素的类别预测。输出通常是一个浮点数矩阵,代表每个像素的概率分布。 5. **后处理**:模型的输出通常需要进一步处理,例如使用阈值或argmax函数选择概率最高的类别,将连续的像素连接成连通组件,以获得清晰的分割结果。 6. **结果可视化**:我们可以用OpenCV的颜色映射功能将类别标签转换为直观的颜色图像,便于观察和分析。 7. **优化和性能**:在实际应用中,可能需要考虑模型执行速度和内存使用。可以通过模型优化工具(如ONNX Runtime或TensorRT)来提升推理速度,或者使用异步执行、多线程等技术提高效率。 8. **扩展性**:此教程的基础可以扩展到其他类型的语义分割任务,例如视频处理或实时应用。只需确保模型和处理流程适应新的数据流。 通过这个教程,你将掌握使用C++和OpenCV实现多类别语义分割的基本步骤,并了解如何部署ONNX模型。这不仅加深了对计算机视觉的理解,也为未来更复杂的图像处理任务奠定了基础。

文件下载

资源详情

[{"title":"( 2 个子文件 222.97MB ) 多类别语义分割C++实现(onnx部署)详细教程","children":[{"title":"picture_Seg_test.cpp <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"opencv-4.5.5-vc14_vc15.exe <span style='color:#111;'> 223.01MB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明