融合时间序列的POI动态推荐算法.pdf

上传者: 44248112 | 上传时间: 2021-06-17 16:24:03 | 文件大小: 398KB | 文件类型: PDF
兴趣点( POI) 的签到数据体现了用户的偏好和兴趣点的分布特征,这在兴趣点推荐领域有极为重要的价值. 为了缓解 数据稀疏造成的推荐不准确等问题,本文提出了融合时间序列的 POI 动态推荐算法,结合用户与用户之间的关系、兴趣点位置 以及流行度信息等. 首先划分时间序列,得到时间因子的相似度;其次时间序列融入到基于用户的协同过滤算法,再根据时间的 连续性特征得到基于用户的预测评分,然后将地理影响因子与基于时间的流行度信息结合,预测用户的评分,进而与基于用户 的评分加权融合;最后,在 Gowalla 数据集上进行实验,结果表明,本文提出的融合时间序列的 POI 动态推荐算法能够有效减小 推荐误差,

文件下载

评论信息

  • denghaojian :
    只是一篇论文。。。
    2020-09-01

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明