Deep Learning, Vol. 2: From Basics to Practice

上传者: 43960172 | 上传时间: 2022-02-13 17:26:21 | 文件大小: 103.71MB | 文件类型: -
Deep Learning, Vol. 2: From Basics to Practice By 作者: Andrew Glassner Pub Date: 2018 ISBN: n/a Pages: (914 of 1750) Format: PDF Publication Date: February 19, 2018 Language: English ASIN: B079Y1M81K People are using the tools of deep learning to change how we think about science, art, engineering, business, medicine, and even music. This book is for people who want to understand this field well enough to create deep learning systems, train them, and then use them with confidence to make their own contributions. The book takes a friendly, informal approach. Our goal is to make the ideas of this field simple and accessible to everyone, as shown in the Contents below. Since most practitioners today use one of several free, open-source deep-learning libraries to build their systems, the hard part isn’t in the programming. Rather, it’s knowing what tools to use, and when, and how. Building a working deep learning system requires making a series of technically informed choices, and with today’s tools, those choices require understanding what’s going on under the hood. This book is designed to give you that understanding. You’ll be able to choose the right kind of architecture, how to build a system that can learn, how to train it, and then how to use it to accomplish your goals. You’ll be able to read and understand the documentation for whatever library you’d like to use. And you’ll be able to follow exciting, on-going breakthroughs as they appear, because you’ll have the knowledge and vocabulary that let you read new material, and discuss it with other people doing deep learning. The book is extensively illustrated with over 1000 original figures. They are also all available for free download, for your own use. You don’t need any previous experience with machine learning or deep learning for this book. You don’t need to be a mathematician, because there’s nothing in the book harder than the occasional multiplication. You don’t need to choose a particular programming language, or library, or piece of hardware, because our approach is largely independent of those things. Our focus is on the principles and techniques that are applicable to any language, library, and hardware. Even so, practical programming is important. To stay focused, we gather our programming discussions into 3 chapters that show how to use two important and free Python libraries. Both chapters come with extensive Jupyter notebooks that contain all the code. Other chapters also offer notebooks for for every Python-generated figure. Our goal is to give you all the basics you need to understand deep learning, and then show how to use those ideas to construct your own systems. Everything is covered from the ground up, culminating in working systems illustrated with running code. The book is organized into two volumes. Volume 1 covers the basic ideas that support the field, and which form the core understanding for using these methods well. Volume 2 puts these principles into practice. Deep learning is fast becoming part of the intellectual toolkit used by scientists, artists, executives, doctors, musicians, and anyone else who wants to discover the information hiding in their data, paintings, business reports, test results, musical scores, and more. This friendly, informal book puts those tools into your pocket.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明