多智能体强化学习 IPPO PyTorch版

上传者: 43887510 | 上传时间: 2026-01-13 09:07:26 | 文件大小: 4.38MB | 文件类型: RAR
多智能体强化学习是深度强化学习领域中的一个高级主题,涉及到多个智能体(agent)在同一个环境中协同或者竞争以实现各自或者共同的目标。在这一领域中,智能体需要学习如何在交互中进行决策,这是通过强化学习的框架来实现的,其中智能体根据与环境交互所获得的奖励来改进其策略。 IPPO,即Importance Weighted Proximal Policy Optimization,是一种算法,它是在Proximal Policy Optimization(PPO)算法的基础上发展而来的。PPO是一种流行的策略梯度方法,它旨在通过限制策略更新的幅度来提高训练的稳定性。PPO通过引入一个截断概率比率来防止更新过程中产生的过大的策略改变,从而避免了性能的大幅波动。而IPPO进一步引入了重要性加权的概念,允许每个智能体在多智能体场景中对其他智能体的行动给出不同的重视程度,这在处理大规模或者异质智能体时尤其有用。 PyTorch是一个开源的机器学习库,主要用于计算机视觉和自然语言处理领域的研究和开发。PyTorch提供了强大的GPU加速的张量计算能力,并且拥有一个易于使用的神经网络库,使得研究人员和开发者可以快速地设计和训练深度学习模型。在多智能体强化学习的研究中,PyTorch提供了极大的灵活性和便捷性,能够帮助研究者更快地将理论转化为实际应用。 《多智能体强化学习 IPPO PyTorch版》这本书,从代码学习的角度出发,通过实际的代码实现来引导读者深入了解多智能体强化学习中的IPPO算法。书中可能包含以下几个方面的知识点: 1. 强化学习的基础知识,包括马尔可夫决策过程(MDP)、价值函数、策略函数等概念。 2. 智能体如何在环境中采取行动,以及如何基于状态和环境反馈更新策略。 3. PPO算法的核心思想、原理以及它如何在实际应用中发挥作用。 4. IPPO算法相较于PPO的改进之处,以及重要性加权的具体应用。 5. PyTorch框架的使用,包括其张量运算、自动梯度计算等关键特性。 6. 如何在PyTorch中构建和训练多智能体强化学习模型。 7. 实际案例研究,展示IPPO算法在不同多智能体环境中的应用。 8. 调试、评估和优化多智能体强化学习模型的策略和技巧。 在学习这本书的过程中,读者能够通过阅读和修改代码来获得实践经验,这将有助于他们更好地理解多智能体强化学习算法,并将其应用于实际问题中。这本书适合那些有一定深度学习和强化学习背景的读者,尤其是希望深入了解和实现多智能体强化学习算法的研究生、研究人员和工程师。

文件下载

资源详情

[{"title":"( 100 个子文件 4.38MB ) 多智能体强化学习 IPPO PyTorch版","children":[{"title":"config <span style='color:#111;'> 300B </span>","children":null,"spread":false},{"title":"description <span style='color:#111;'> 73B </span>","children":null,"spread":false},{"title":"exclude <span style='color:#111;'> 240B </span>","children":null,"spread":false},{"title":"PredatorPrey7x7-v0.gif <span style='color:#111;'> 1.61MB </span>","children":null,"spread":false},{"title":"Lumberjacks-v0.gif <span style='color:#111;'> 1011.41KB </span>","children":null,"spread":false},{"title":"PredatorPrey5x5-v0.gif <span style='color:#111;'> 682.38KB </span>","children":null,"spread":false},{"title":"Combat-v0.gif <span style='color:#111;'> 631.78KB </span>","children":null,"spread":false},{"title":"PongDuel-v0.gif <span style='color:#111;'> 505.88KB </span>","children":null,"spread":false},{"title":"Checkers-v0.gif <span style='color:#111;'> 317.59KB </span>","children":null,"spread":false},{"title":"Switch4-v0.gif <span style='color:#111;'> 289.75KB </span>","children":null,"spread":false},{"title":"Switch2-v0.gif <span style='color:#111;'> 275.04KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 120B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 172B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 172B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 23B </span>","children":null,"spread":false},{"title":"pack-bcf0e88d4615bd24678e45154608496f29a2c4e8.idx <span style='color:#111;'> 30.36KB </span>","children":null,"spread":false},{"title":"index <span style='color:#111;'> 5.76KB </span>","children":null,"spread":false},{"title":"IPPO.ipynb <span style='color:#111;'> 106.56KB </span>","children":null,"spread":false},{"title":"IPPO-checkpoint.ipynb <span style='color:#111;'> 24.48KB </span>","children":null,"spread":false},{"title":"IPPO-Copy1-checkpoint.ipynb <span style='color:#111;'> 24.48KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.27KB </span>","children":null,"spread":false},{"title":"master <span style='color:#111;'> 172B </span>","children":null,"spread":false},{"title":"master <span style='color:#111;'> 41B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false},{"title":"pack-bcf0e88d4615bd24678e45154608496f29a2c4e8.pack <span style='color:#111;'> 3.67MB </span>","children":null,"spread":false},{"title":"packed-refs <span style='color:#111;'> 288B </span>","children":null,"spread":false},{"title":"combat.py <span style='color:#111;'> 20.58KB </span>","children":null,"spread":false},{"title":"combat-checkpoint.py <span style='color:#111;'> 20.58KB </span>","children":null,"spread":false},{"title":"lumberjacks.py <span style='color:#111;'> 16.12KB </span>","children":null,"spread":false},{"title":"predator_prey.py <span style='color:#111;'> 15.24KB </span>","children":null,"spread":false},{"title":"checkers.py <span style='color:#111;'> 11.73KB </span>","children":null,"spread":false},{"title":"pong_duel.py <span style='color:#111;'> 11.60KB </span>","children":null,"spread":false},{"title":"switch_one_corridor.py <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"traffic_junction.py <span style='color:#111;'> 6.59KB </span>","children":null,"spread":false},{"title":"monitor.py <span style='color:#111;'> 5.09KB </span>","children":null,"spread":false},{"title":"draw.py <span style='color:#111;'> 4.31KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"test_lumberjacks.py <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false},{"title":"test_checkers.py <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"test_switch2.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"test_predatorprey5x5.py <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"test_predatorprey7x7.py <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"test_combat.py <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"test_openai_cartpole.py <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"test_pong_duel.py <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"record_environment.py <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"interactive_agent.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"random_agent.py <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"generate_env_markdown_table.py <span style='color:#111;'> 923B </span>","children":null,"spread":false},{"title":"observation_space.py <span style='color:#111;'> 795B </span>","children":null,"spread":false},{"title":"action_space.py <span style='color:#111;'> 523B </span>","children":null,"spread":false},{"title":"stats_recorder.py <span style='color:#111;'> 320B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 47B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 43B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 41B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 39B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 38B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 31B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 30B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 28B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"combat.cpython-38.pyc <span style='color:#111;'> 17.24KB </span>","children":null,"spread":false},{"title":"combat.cpython-39.pyc <span style='color:#111;'> 17.09KB </span>","children":null,"spread":false},{"title":"draw.cpython-38.pyc <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"draw.cpython-39.pyc <span style='color:#111;'> 3.88KB </span>","children":null,"spread":false},{"title":"__init__.cpython-39.pyc <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"__init__.cpython-38.pyc <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"observation_space.cpython-38.pyc <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"observation_space.cpython-39.pyc <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"action_space.cpython-38.pyc <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"action_space.cpython-39.pyc <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"__init__.cpython-39.pyc <span style='color:#111;'> 189B </span>","children":null,"spread":false},{"title":"__init__.cpython-38.pyc <span style='color:#111;'> 186B </span>","children":null,"spread":false},{"title":"__init__.cpython-39.pyc <span style='color:#111;'> 151B </span>","children":null,"spread":false},{"title":"__init__.cpython-38.pyc <span style='color:#111;'> 148B </span>","children":null,"spread":false},{"title":"__init__.cpython-39.pyc <span style='color:#111;'> 145B </span>","children":null,"spread":false},{"title":"__init__.cpython-38.pyc <span style='color:#111;'> 142B </span>","children":null,"spread":false},{"title":"pre-rebase.sample <span style='color:#111;'> 4.78KB </span>","children":null,"spread":false},{"title":"fsmonitor-watchman.sample <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"update.sample <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"push-to-checkout.sample <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"pre-commit.sample <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"prepare-commit-msg.sample <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"pre-push.sample <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"commit-msg.sample <span style='color:#111;'> 896B </span>","children":null,"spread":false},{"title":"pre-receive.sample <span style='color:#111;'> 544B </span>","children":null,"spread":false},{"title":"applypatch-msg.sample <span style='color:#111;'> 478B </span>","children":null,"spread":false},{"title":"pre-applypatch.sample <span style='color:#111;'> 424B </span>","children":null,"spread":false},{"title":"pre-merge-commit.sample <span style='color:#111;'> 416B </span>","children":null,"spread":false},{"title":"post-update.sample <span style='color:#111;'> 189B </span>","children":null,"spread":false},{"title":"python-package.yml <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"python-publish.yml <span style='color:#111;'> 917B </span>","children":null,"spread":false},{"title":".travis.yml <span style='color:#111;'> 197B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明