6.深度卷集网络实现人脸检测与识别python代码

上传者: 43471818 | 上传时间: 2021-06-21 18:15:04 | 文件大小: 2.12MB | 文件类型: ZIP
采用python语言编写代码,实现基于深度学习的人脸检测与识别程序

文件下载

资源详情

[{"title":"( 84 个子文件 2.12MB ) 6.深度卷集网络实现人脸检测与识别python代码","children":[{"title":"chapter_6","children":[{"title":".project <span style='color:#111;'> 361B </span>","children":null,"spread":false},{"title":"tmp","children":[{"title":"test_align.py <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"funnel_dataset.py <span style='color:#111;'> 4.16KB </span>","children":null,"spread":false},{"title":"test_invariance_on_lfw.py <span style='color:#111;'> 11.03KB </span>","children":null,"spread":false},{"title":"mnist_center_loss.py <span style='color:#111;'> 18.14KB </span>","children":null,"spread":false},{"title":"nn3.py <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"vggverydeep19.py <span style='color:#111;'> 3.93KB </span>","children":null,"spread":false},{"title":"mnist_noise_labels.py <span style='color:#111;'> 15.04KB </span>","children":null,"spread":false},{"title":"vggface16.py <span style='color:#111;'> 4.69KB </span>","children":null,"spread":false},{"title":"align_dataset.m <span style='color:#111;'> 8.23KB </span>","children":null,"spread":false},{"title":"pilatus800.jpg <span style='color:#111;'> 105.80KB </span>","children":null,"spread":false},{"title":"deepdream.py <span style='color:#111;'> 10.19KB </span>","children":null,"spread":false},{"title":"test1.py <span style='color:#111;'> 21B </span>","children":null,"spread":false},{"title":"nn2.py <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"invariance_test.txt <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"seed_test.py <span style='color:#111;'> 5.39KB </span>","children":null,"spread":false},{"title":"nn4.py <span style='color:#111;'> 4.55KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 16B </span>","children":null,"spread":false},{"title":"visualize.py <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"dataset_read_speed.py <span style='color:#111;'> 903B </span>","children":null,"spread":false},{"title":"mtcnn.py <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"mtcnn_test.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"detect_face_v2.m <span style='color:#111;'> 8.80KB </span>","children":null,"spread":false},{"title":"visualize_vgg_model.py <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"detect_face_v1.m <span style='color:#111;'> 7.77KB </span>","children":null,"spread":false},{"title":"cacd2000_split_identities.py <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"random_test.py <span style='color:#111;'> 3.65KB </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 8.60KB </span>","children":null,"spread":false},{"title":"rename_casia_directories.py <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"select_triplets_test.py <span style='color:#111;'> 774B </span>","children":null,"spread":false},{"title":"mtcnn_test_pnet_dbg.py <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"batch_represent.py <span style='color:#111;'> 5.36KB </span>","children":null,"spread":false},{"title":"visualize_vggface.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"nn4_small2_v1.py <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false}],"spread":false},{"title":"src","children":[{"title":"compare.py <span style='color:#111;'> 5.25KB </span>","children":null,"spread":false},{"title":"freeze_graph.py <span style='color:#111;'> 4.51KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"inception_resnet_v1.py <span style='color:#111;'> 11.30KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 16B </span>","children":null,"spread":false},{"title":"squeezenet.py <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false},{"title":"inception_resnet_v2.py <span style='color:#111;'> 13.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"facenet.py <span style='color:#111;'> 20.15KB </span>","children":null,"spread":false},{"title":"train_tripletloss.py <span style='color:#111;'> 24.15KB </span>","children":null,"spread":false},{"title":"download_and_extract_model.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"classifier.py <span style='color:#111;'> 7.92KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 16B </span>","children":null,"spread":false},{"title":"validate_on_lfw.py <span style='color:#111;'> 5.27KB </span>","children":null,"spread":false},{"title":"calculate_filtering_metrics.py <span style='color:#111;'> 5.86KB </span>","children":null,"spread":false},{"title":"train_softmax.py <span style='color:#111;'> 23.65KB </span>","children":null,"spread":false},{"title":"align","children":[{"title":"align_dataset.py <span style='color:#111;'> 6.82KB </span>","children":null,"spread":false},{"title":"align_dataset_mtcnn.py <span style='color:#111;'> 7.21KB </span>","children":null,"spread":false},{"title":"detect_face.py <span style='color:#111;'> 30.68KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"det1.npy <span style='color:#111;'> 26.73KB </span>","children":null,"spread":false},{"title":"det2.npy <span style='color:#111;'> 392.27KB </span>","children":null,"spread":false},{"title":"det3.npy <span style='color:#111;'> 1.49MB </span>","children":null,"spread":false},{"title":"align_dlib.py <span style='color:#111;'> 8.58KB </span>","children":null,"spread":false}],"spread":false},{"title":"lfw.py <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"decode_msceleb_dataset.py <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false},{"title":"download_vgg_face_dataset.py <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false}],"spread":false},{"title":".pylintrc <span style='color:#111;'> 13.44KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 87B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":".travis.yml <span style='color:#111;'> 448B </span>","children":null,"spread":false},{"title":"util","children":[{"title":"plot_learning_curves.m <span style='color:#111;'> 4.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"test","children":[{"title":"train_test.py <span style='color:#111;'> 9.33KB </span>","children":null,"spread":false},{"title":"batch_norm_test.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"triplet_loss_test.py <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"center_loss_test.py <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"restore_test.py <span style='color:#111;'> 6.94KB </span>","children":null,"spread":false},{"title":"decov_loss_test.py <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_imgs","children":[{"title":"2.jpg <span style='color:#111;'> 21.18KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 21.25KB </span>","children":null,"spread":false},{"title":"3.jpg <span style='color:#111;'> 7.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE.md <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":".pydevproject <span style='color:#111;'> 461B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"learning_rate_schedule_classifier_casia.txt <span style='color:#111;'> 106B </span>","children":null,"spread":false},{"title":"learning_rate_retrain_tripletloss.txt <span style='color:#111;'> 108B </span>","children":null,"spread":false},{"title":"images","children":[{"title":"Anthony_Hopkins_0002.jpg <span style='color:#111;'> 12.73KB </span>","children":null,"spread":false},{"title":"Anthony_Hopkins_0001.jpg <span style='color:#111;'> 12.91KB </span>","children":null,"spread":false}],"spread":false},{"title":"pairs.txt <span style='color:#111;'> 151.69KB </span>","children":null,"spread":false},{"title":"learning_rate_schedule_classifier_msceleb.txt <span style='color:#111;'> 107B </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"README_eng.md <span style='color:#111;'> 4.95KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明