数据预处理资料,有代码,有原理介绍

上传者: 43327597 | 上传时间: 2021-06-06 20:43:43 | 文件大小: 34.44MB | 文件类型: RAR
这是一个适合学习数据预处理的资料,其中涉及知识面很广,几乎涉及了所有的数据预处理知识,还有扩展案例

文件下载

资源详情

[{"title":"( 31 个子文件 34.44MB ) 数据预处理资料,有代码,有原理介绍","children":[{"title":"pandas——相关系数函数corr().pdf <span style='color:#111;'> 562.68KB </span>","children":null,"spread":false},{"title":"T泰坦尼克-全员存活经典分析.pdf <span style='color:#111;'> 1.15MB </span>","children":null,"spread":false},{"title":"常见的数据预处理--python篇数据集划分、归一化.pdf <span style='color:#111;'> 2.69MB </span>","children":null,"spread":false},{"title":"taitanic对pandas进行数据预处理的实例讲解.pdf <span style='color:#111;'> 1.87MB </span>","children":null,"spread":false},{"title":"python数据预处理方式 数据降维.pdf <span style='color:#111;'> 605.19KB </span>","children":null,"spread":false},{"title":"pandas进行数据清理的学习笔记.pdf <span style='color:#111;'> 2.58MB </span>","children":null,"spread":false},{"title":"pandas DataFrame 单个数据修改(cell).pdf <span style='color:#111;'> 467.76KB </span>","children":null,"spread":false},{"title":"SVD.pdf <span style='color:#111;'> 791.14KB </span>","children":null,"spread":false},{"title":"关于数据的异常检测,看这一篇就够了.pdf <span style='color:#111;'> 1.70MB </span>","children":null,"spread":false},{"title":"干货:用Python进行数据清洗,这7种方法你一定要掌握.pdf <span style='color:#111;'> 1.50MB </span>","children":null,"spread":false},{"title":"PandasPython数据预处理之清洗.pdf <span style='color:#111;'> 613.78KB </span>","children":null,"spread":false},{"title":"S Python sklearn实例:预测波士顿房价.pdf <span style='color:#111;'> 974.93KB </span>","children":null,"spread":false},{"title":"2.4.2数据预处理 降维(归约) sklearn.pdf <span style='color:#111;'> 1.55MB </span>","children":null,"spread":false},{"title":"Python机器学习-数据预处理技术(标准化处理、归一化、二值化、独热编码、标记编码).pdf <span style='color:#111;'> 373.76KB </span>","children":null,"spread":false},{"title":"python实现数据预处理.pdf <span style='color:#111;'> 746.18KB </span>","children":null,"spread":false},{"title":"Python数据预处理:彻底理解标准化和归一化.pdf <span style='color:#111;'> 920.77KB </span>","children":null,"spread":false},{"title":"主成分分析(PCA)原理总结.pdf <span style='color:#111;'> 606.08KB </span>","children":null,"spread":false},{"title":"pandas 之 groupby.pdf <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false},{"title":"Python机器学习 -- 数据预处理(理论).pdf <span style='color:#111;'> 1.03MB </span>","children":null,"spread":false},{"title":"scikit_learn数据预处理_u010472823的博客-CSDN博客.pdf <span style='color:#111;'> 570.66KB </span>","children":null,"spread":false},{"title":"TKaggle入门之泰坦尼克号生还率预测.pdf <span style='color:#111;'> 592.89KB </span>","children":null,"spread":false},{"title":"T用Python预测泰坦尼克生存情况-附数据集.pdf <span style='color:#111;'> 1.13MB </span>","children":null,"spread":false},{"title":"Kaggle金牌得主的Python数据挖掘框架,机器学习基本流程都讲清楚了.pdf <span style='color:#111;'> 4.38MB </span>","children":null,"spread":false},{"title":"titanic.xlsx文件,按照教材示例步骤,完成数据清洗.pdf <span style='color:#111;'> 1.03MB </span>","children":null,"spread":false},{"title":"大数据预处理技术总结.pdf <span style='color:#111;'> 553.73KB </span>","children":null,"spread":false},{"title":"线性判别分析LDA原理总结.pdf <span style='color:#111;'> 793.73KB </span>","children":null,"spread":false},{"title":"机器学习-特征工程之数值处理(二)_微积冰-CSDN博客.pdf <span style='color:#111;'> 5.50MB </span>","children":null,"spread":false},{"title":"机器学习-特征工程初识(一)_微积冰-CSDN博客.pdf <span style='color:#111;'> 787.48KB </span>","children":null,"spread":false},{"title":"使用 Python pandas 包进行数据清洗小结,分析电话号码的合法性.pdf <span style='color:#111;'> 384.46KB </span>","children":null,"spread":false},{"title":"Pandas 数据处理,数据清洗详解.pdf <span style='color:#111;'> 1.10MB </span>","children":null,"spread":false},{"title":"pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[].pdf <span style='color:#111;'> 843.37KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

  • bj278595437 :
    没什么价值,都是网上文章
    2020-12-28

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明