基于卷积神经网络的图片数字识别系统设计与实现.caj

上传者: 43324677 | 上传时间: 2023-04-07 12:23:28 | 文件大小: 2.99MB | 文件类型: CAJ
传统的图像识别问题为经典的特征提取和模式匹配问题,共分为两个方面图像识别 和特征匹配。本文首先对图像识别问题进行了分析和总结,选取了以 Python 语言的 PTL 库作为图像识别的基本架构,其基本思路为讲图片预处理,包括图像分割、字符提取等。 字符识别本质为一个模式匹配问题,采用神经网络具有较好准确度,但是神经网络 具有训练时间长,容易陷入局部次优的缺陷。针对这一个问题,采用以卷积神经网络, 以卷积作为度量标准,进一步提升神经网络的反馈性能。 论文以 LeNet5 为卷积神经网络的基本工具集,针对设计和开发数字图像识别系统 系统实现所需要的技术方法需要进行全面的分析和掌握。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明