DeepCrack_基于分层卷积的裂缝识别_生成裂缝_

上传者: 42691388 | 上传时间: 2022-07-28 19:13:16 | 文件大小: 18.58MB | 文件类型: ZIP
裂纹是典型的线结构,在许多计算机视觉应用中都很有趣。在实际应用中,路面裂缝等许多裂缝连续性差、对比度低,给利用低层特征进行基于图像的裂缝检测带来了很大的挑战。在本文中,我们提出了深度裂纹——一个端到端可训练的深度卷积神经网络,通过学习用于裂纹表示的高级特征来自动检测裂纹。该方法将在层次卷积阶段学习到的多尺度深度卷积特征融合在一起,以获取线路结构。更详细的表示在大比例尺的feature maps中进行,更全面的表示在小比例尺的feature maps中进行。我们在SegNet的编码器解码器架构上构建深度裂纹网,并对在相同尺度下在编码器网络和解码器网络中生成的卷积特征进行配对融合。

文件下载

资源详情

[{"title":"( 62 个子文件 18.58MB ) DeepCrack_基于分层卷积的裂缝识别_生成裂缝_","children":[{"title":"DeepCrack","children":[{"title":"figures","children":[{"title":"fig <span style='color:#111;'> 2B </span>","children":null,"spread":false},{"title":"6328.jpg <span style='color:#111;'> 211.72KB </span>","children":null,"spread":false},{"title":"1045.png <span style='color:#111;'> 215.28KB </span>","children":null,"spread":false},{"title":"6750.jpg <span style='color:#111;'> 180.74KB </span>","children":null,"spread":false},{"title":"1042.png <span style='color:#111;'> 217.21KB </span>","children":null,"spread":false},{"title":"deepcrack-compare3.png <span style='color:#111;'> 95.43KB </span>","children":null,"spread":false},{"title":"1000.png <span style='color:#111;'> 326.74KB </span>","children":null,"spread":false},{"title":"1095.png <span style='color:#111;'> 299.81KB </span>","children":null,"spread":false},{"title":"network.png <span style='color:#111;'> 112.67KB </span>","children":null,"spread":false},{"title":"DSCN6428.JPG <span style='color:#111;'> 245.11KB </span>","children":null,"spread":false},{"title":"1065.png <span style='color:#111;'> 211.58KB </span>","children":null,"spread":false},{"title":"6264.jpg <span style='color:#111;'> 207.38KB </span>","children":null,"spread":false},{"title":"6192.jpg <span style='color:#111;'> 228.00KB </span>","children":null,"spread":false},{"title":"deepcrack-compare1.png <span style='color:#111;'> 473.61KB </span>","children":null,"spread":false},{"title":"1022.png <span style='color:#111;'> 269.87KB </span>","children":null,"spread":false},{"title":"intro.png <span style='color:#111;'> 427.68KB </span>","children":null,"spread":false},{"title":"1096.png <span style='color:#111;'> 269.96KB </span>","children":null,"spread":false},{"title":"deepcrack-compare2.png <span style='color:#111;'> 94.79KB </span>","children":null,"spread":false},{"title":"1014.png <span style='color:#111;'> 326.29KB </span>","children":null,"spread":false},{"title":"6207.jpg <span style='color:#111;'> 214.23KB </span>","children":null,"spread":false}],"spread":false},{"title":"DeepCrack_ Learning Hierarchical Convolutional_ Features for Crack Detection.pdf <span style='color:#111;'> 10.47MB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 8.32KB </span>","children":null,"spread":false},{"title":".git","children":[{"title":"logs","children":[{"title":"HEAD <span style='color:#111;'> 186B </span>","children":null,"spread":false},{"title":"refs","children":[{"title":"heads","children":[{"title":"master <span style='color:#111;'> 186B </span>","children":null,"spread":false}],"spread":true},{"title":"remotes","children":[{"title":"origin","children":[{"title":"HEAD <span style='color:#111;'> 186B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true},{"title":"packed-refs <span style='color:#111;'> 321B </span>","children":null,"spread":false},{"title":"info","children":[{"title":"exclude <span style='color:#111;'> 240B </span>","children":null,"spread":false}],"spread":true},{"title":"index <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"objects","children":[{"title":"pack","children":[{"title":"pack-34efcbab4f1f2cc4ba308e8e137e64429842d058.idx <span style='color:#111;'> 7.96KB </span>","children":null,"spread":false},{"title":"pack-34efcbab4f1f2cc4ba308e8e137e64429842d058.pack <span style='color:#111;'> 4.53MB </span>","children":null,"spread":false}],"spread":true},{"title":"info","children":null,"spread":false}],"spread":true},{"title":"HEAD <span style='color:#111;'> 23B </span>","children":null,"spread":false},{"title":"config <span style='color:#111;'> 303B </span>","children":null,"spread":false},{"title":"refs","children":[{"title":"heads","children":[{"title":"master <span style='color:#111;'> 41B </span>","children":null,"spread":false}],"spread":true},{"title":"tags","children":null,"spread":false},{"title":"remotes","children":[{"title":"origin","children":[{"title":"HEAD <span style='color:#111;'> 32B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true},{"title":"hooks","children":[{"title":"pre-applypatch.sample <span style='color:#111;'> 424B </span>","children":null,"spread":false},{"title":"pre-push.sample <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"commit-msg.sample <span style='color:#111;'> 896B </span>","children":null,"spread":false},{"title":"pre-commit.sample <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"applypatch-msg.sample <span style='color:#111;'> 478B </span>","children":null,"spread":false},{"title":"prepare-commit-msg.sample <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"update.sample <span style='color:#111;'> 3.53KB </span>","children":null,"spread":false},{"title":"fsmonitor-watchman.sample <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"post-update.sample <span style='color:#111;'> 189B </span>","children":null,"spread":false},{"title":"pre-rebase.sample <span style='color:#111;'> 4.78KB </span>","children":null,"spread":false},{"title":"pre-receive.sample <span style='color:#111;'> 544B </span>","children":null,"spread":false}],"spread":false},{"title":"description <span style='color:#111;'> 73B </span>","children":null,"spread":false}],"spread":true},{"title":"codes","children":[{"title":"train.py <span style='color:#111;'> 10.07KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"checkpoints","children":[{"title":"111 <span style='color:#111;'> 2B </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"model","children":[{"title":"deepcrack.py <span style='color:#111;'> 4.77KB </span>","children":null,"spread":false},{"title":"111 <span style='color:#111;'> 2B </span>","children":null,"spread":false}],"spread":true},{"title":"tools","children":[{"title":"visdom.py <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false},{"title":"111 <span style='color:#111;'> 2B </span>","children":null,"spread":false},{"title":"checkpointer.py <span style='color:#111;'> 5.54KB </span>","children":null,"spread":false},{"title":"paths.py <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"val_example.txt <span style='color:#111;'> 20.97KB </span>","children":null,"spread":false},{"title":"111 <span style='color:#111;'> 2B </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"train_example.txt <span style='color:#111;'> 9.45KB </span>","children":null,"spread":false},{"title":"augmentation.py <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"trainer.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明