KSVD_Matlab_ToolBox_KSVD去噪_K-SVD_ksvd信号_过完备字典_k-svdmatlab_

上传者: 42683394 | 上传时间: 2022-07-28 20:07:41 | 文件大小: 5.97MB | 文件类型: RAR
K-SVD是一种迭代算法,是K-means算法的扩展,一般是用来在稀疏表示问题中的字典训练方面。这里的“字典”是一个过完备的矩阵,由其可使得一个信号向量可以表示成字典中原子(字典的列向量)的稀疏线性组合。

文件下载

资源详情

[{"title":"( 23 个子文件 5.97MB ) KSVD_Matlab_ToolBox_KSVD去噪_K-SVD_ksvd信号_过完备字典_k-svdmatlab_","children":[{"title":"KSVD_Matlab_ToolBox","children":[{"title":"house.png <span style='color:#111;'> 34.17KB </span>","children":null,"spread":false},{"title":"displayDictionaryElementsAsImage.asv <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"denoiseImageGlobal.m <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"globalTrainedDictionary.mat <span style='color:#111;'> 5.48MB </span>","children":null,"spread":false},{"title":"denoiseImageDCT.m <span style='color:#111;'> 5.30KB </span>","children":null,"spread":false},{"title":"MOD.m <span style='color:#111;'> 7.86KB </span>","children":null,"spread":false},{"title":"barbara.png <span style='color:#111;'> 181.37KB </span>","children":null,"spread":false},{"title":"NN_BP.m <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"my_im2col.m <span style='color:#111;'> 631B </span>","children":null,"spread":false},{"title":"peppers256.png <span style='color:#111;'> 39.24KB </span>","children":null,"spread":false},{"title":"demo1.m <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"OMP.m <span style='color:#111;'> 954B </span>","children":null,"spread":false},{"title":"OMPerr.m <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"denoiseImageKSVD.m <span style='color:#111;'> 8.88KB </span>","children":null,"spread":false},{"title":"demo3.m <span style='color:#111;'> 8.30KB </span>","children":null,"spread":false},{"title":"KSVD_NN.m <span style='color:#111;'> 11.31KB </span>","children":null,"spread":false},{"title":"demo2.m <span style='color:#111;'> 3.48KB </span>","children":null,"spread":false},{"title":"README.txt <span style='color:#111;'> 4.69KB </span>","children":null,"spread":false},{"title":"boat.png <span style='color:#111;'> 173.60KB </span>","children":null,"spread":false},{"title":"lena.png <span style='color:#111;'> 147.66KB </span>","children":null,"spread":false},{"title":"KSVD.m <span style='color:#111;'> 12.00KB </span>","children":null,"spread":false},{"title":"gererateSyntheticDictionaryAndData.m <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"displayDictionaryElementsAsImage.m <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明