ACL 2020 论文——谣言检测_FakeNewsDetection_目标检测_GCAN_谣言_谣言检测_源码

上传者: 42669344 | 上传时间: 2022-03-22 17:02:37 | 文件大小: 1.01MB | 文件类型: -
本文解决了在更现实的社交媒体场景下的假新闻检测问题。给定源短文本推文和相应的没有文本评论的转发用户序列,我们的目的是预测源推文是否是假的,并通过突出可疑转发者的证据和他们关注的词语来产生解释。为了实现这一目标,我们提出了一种新的基于神经网络的模型--图感知协同注意网络(GCAN)。在真实推文数据集上进行的广泛实验表明,GCAN的平均准确率比最先进的方法高出16%。此外,案例研究还表明,GCAN可以给出合理的解释。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明