⑶对偶原理(定理--离散数学——离散

上传者: 42204453 | 上传时间: 2021-11-13 18:38:36 | 文件大小: 2.05MB | 文件类型: -
⑶对偶原理(定理1-5.2): 令A(P1,P2,…,Pn) 、B(P1,P2,…,Pn)是只含有 联结词、∨、∧的命题公式,则如果 A(P1,P2,…,Pn)B(P1,P2,…,Pn) 则 A*(P1,P2,…,Pn)B*(P1,P2,…, Pn) 证明:因为 A(P1,P2,…,Pn)B(P1,P2,…,Pn) 故 A(P1,P2,…,Pn)B(P1,P2,…,Pn) 而 A(P1,P2,…,Pn)A*(P1,P2,…,Pn) B(P1,P2,…,Pn)B*(P1,P2,…,Pn) 故 A*(P1,P2,…,Pn) B*(P1,P2,…,Pn) 所以 A*(P1,P2,…,Pn)  B*(P1, P2,…, Pn)

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明