上传者: 42204303
|
上传时间: 2022-04-24 13:46:59
|
文件大小: 388KB
|
文件类型: PPT
浅层神经网络的缺陷
于是,20世纪90年代,有更多各式各样的浅层模型相继被提出,比如只有一层隐层节点的支撑向量机(SVM,Support Vector Machine)和Boosting,以及没有隐层节点的最大熵方法(例如LR,Logistic Regression)等,在很多应用领域取代了传统的神经网络。
显然,这些浅层结构算法有很多局限性:在有限样本和计算单元情况下对复杂函数的表示能力有限,针对复杂分类问题其泛化能力受到一定的制约。更重要的是,浅层模型有一个特点,就是需要依靠人工来抽取样本的特征。然而,手工地选取特征是一件非常费力的事情,能不能选取好很大程度上靠经验和运气。
能不能自动地学习一些特征呢?