网络模型的性能和泛化能力-BP神经网络详解与实例

上传者: 42197841 | 上传时间: 2022-06-02 21:19:01 | 文件大小: 1.59MB | 文件类型: PPT
5.网络模型的性能和泛化能力 训练神经网络的首要和根本任务是确保训练好的网络模型对非训练样本具有好的泛化能力(推广性),即有效逼近样本蕴含的内在规律,而不是看网络模型对训练样本的拟合能力。从存在性结论可知,即使每个训练样本的误差都很小(可以为零),并不意味着建立的模型已逼近训练样本所蕴含的规律。因此,仅给出训练样本误差(通常是指均方根误差RSME或均方误差、AAE或MAPE等)的大小而不给出非训练样本误差的大小是没有任何意义的。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明