上传者: 42193786
|
上传时间: 2021-12-22 18:14:33
|
文件大小: 5.9MB
|
文件类型: -
先验概率、类条件概率密度函数和后验概率
1. 试简述先验概率,类条件概率密度函数和后验概率等概念间的关系:
先验概率:根据大量统计确定某类事物出现的比例,如在我国大学中,一个学生是男生的先验概率为0.7,而为女生的概率是0.3,这两类概率是互相制约的,因为这两个概率之和应满足总和为1的约束。
类条件概率密度函数:同一类事物的各个属性都有一定的变化范围,在这些变化范围内的分布概率用一种函数形式表示,则称为类条件概率密度函数。这种分布密度只对同一类事物而言,与其它类事物没有关系。为了强调是同一类事物内部,因此这种分布密度函数往往表示成条件概率的形式。例如x表示某一个学生的特征向量,则,男生的概率密度表示成P(x|男生),女生的表示成P(x|女生),这两者之间没有任何关系,即一般的情况下P(x|w1)+P(x|w2)≠1,可为从[0,2]之间的任意值。
后验概率:一个具体事物属于某种类别的概率,例如一个学生用特征向量x表示,它是男性或女性的概率表示成P(男生|x)和P(女生|x),这就是后验概率。由于一个学生只可能为两个性别之一,因此有P(男生|x)+P(女生|x)=1的约束,这一点是与类分布密度函数不同的。后验概率与先验概率也不同,后验概率涉及一个具体事物,而先验概率是泛指一类事物,因此P(男生|x)和P(男生)是两个不同的概念。