ROC曲线-WEKA中文教程

上传者: 42186579 | 上传时间: 2021-09-25 16:36:06 | 文件大小: 14.29MB | 文件类型: PPT
ROC曲线 ROC曲线(Receiver Operating Characteeristic Curve)是显示Classification模型真正率和假正率之间折中的一种图形化方法。 假设样本可分为正负两类,解读ROC图的一些概念定义: 真正(True Positive , TP),被模型预测为正的正样本 假负(False Negative , FN)被模型预测为负的正样本 假正(False Positive , FP)被模型预测为正的负样本 真负(True Negative , TN)被模型预测为负的负样本 真正率(True Positive Rate , TPR)或灵敏度(sensitivity) TPR = TP /(TP + FN) 正样本预测结果数 / 正样本实际数 假正率(False Positive Rate , FPR) FPR = FP /(FP + TN) 被预测为正的负样本结果数 /负样本实际数 ( TPR=1,FPR=0 ) 是理想模型 一个好的分类模型应该尽可能靠近图形的左上角。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明