简街市场预测:[UNIST SDMLAB]简街市场预测

上传者: 42181888 | 上传时间: 2023-01-02 15:59:58 | 文件大小: 269.49MB | 文件类型: ZIP
简街市场预测 UNIST SDMLAB的协同工作。 ,李英浩(Yeongho Lee)医师KHALEQUZZAMAN CHOWDHURY SAYEM,MUBARRAT CHOWDHURY :triangular_flag: 比赛信息 :label: 名称 Kaggle的 :magnifying_glass_tilted_left: 目的 利用交易机会预测交易行为 :stopwatch: 时间线 2020年11月24日-2021年2月22日(UTC) 实际参与,2021年1月13日 :spiral_calendar: 整体时间表 第一周:了解与EDA的竞争,每个解决方案使用基准代码实施 Youngin:LSTM 英浩:XGBoost Sayem:全面介绍 穆巴拉特:LGBM 第二周:[提高性能]像上面一样单独实施基准代码 第三周:最佳成绩解决方案实施 第4周:[提高绩效]最佳成绩解决方案实施 第5周:未安排 :loudspeaker: 储存库规则 :construction_worker: 结构体 +-- input | +-- data +-- ipynb_

文件下载

资源详情

[{"title":"( 50 个子文件 269.49MB ) 简街市场预测:[UNIST SDMLAB]简街市场预测","children":[{"title":"jane-street-market-prediction-master","children":[{"title":"ipynb_notebooks","children":[{"title":"ho","children":[{"title":"Jane Street market prediction.md <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false},{"title":"jane-street-eda-xgboost-study.ipynb <span style='color:#111;'> 20.62KB </span>","children":null,"spread":false},{"title":"XGBoost.md <span style='color:#111;'> 15.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"sayem","children":[{"title":"Jane_Street_Simple_NN.ipynb <span style='color:#111;'> 174.21KB </span>","children":null,"spread":false},{"title":"EDA-Jane-Street.ipynb <span style='color:#111;'> 33.81MB </span>","children":null,"spread":false},{"title":"ann-with-feature-engineering.ipynb <span style='color:#111;'> 5.79MB </span>","children":null,"spread":false}],"spread":true},{"title":"youngin","children":[{"title":"output","children":[{"title":"model","children":[{"title":"5_deep_resnet","children":[{"title":"online_model_4.pth <span style='color:#111;'> 39.82MB </span>","children":null,"spread":false},{"title":"online_model_0.pth <span style='color:#111;'> 39.82MB </span>","children":null,"spread":false},{"title":"online_model_1.pth <span style='color:#111;'> 39.82MB </span>","children":null,"spread":false},{"title":"online_model_3.pth <span style='color:#111;'> 39.82MB </span>","children":null,"spread":false},{"title":"online_model_2.pth <span style='color:#111;'> 39.82MB </span>","children":null,"spread":false}],"spread":true},{"title":"1_deep_resnet","children":[{"title":"online_model_100_0.pth <span style='color:#111;'> 39.82MB </span>","children":null,"spread":false},{"title":"deep_resnet.jpg <span style='color:#111;'> 140.75KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"pytorch_nn_labs.ipynb <span style='color:#111;'> 65.85KB </span>","children":null,"spread":false},{"title":"1st_week.ipynb <span style='color:#111;'> 8.34MB </span>","children":null,"spread":false},{"title":"pytorch_resnet_labs.ipynb <span style='color:#111;'> 63.57KB </span>","children":null,"spread":false},{"title":"jane-pytorch-lstm-implementation.ipynb <span style='color:#111;'> 11.53MB </span>","children":null,"spread":false},{"title":"imgs","children":[{"title":"LSTM3-SimpleRNN.png <span style='color:#111;'> 176.78KB </span>","children":null,"spread":false},{"title":"LSTM3-focus-C.png <span style='color:#111;'> 67.05KB </span>","children":null,"spread":false},{"title":"M5_feature-lag.png <span style='color:#111;'> 81.65KB </span>","children":null,"spread":false},{"title":"M5_Process-of-Time-Series.png <span style='color:#111;'> 46.68KB </span>","children":null,"spread":false},{"title":"RNN-rolled.png <span style='color:#111;'> 21.23KB </span>","children":null,"spread":false},{"title":"M5_single-lstm.png <span style='color:#111;'> 102.87KB </span>","children":null,"spread":false},{"title":"Result_den_heirarchi.png <span style='color:#111;'> 16.13KB </span>","children":null,"spread":false},{"title":"M5_create-squence.png <span style='color:#111;'> 119.34KB </span>","children":null,"spread":false},{"title":"LSTM3-C-line.png <span style='color:#111;'> 51.06KB </span>","children":null,"spread":false},{"title":"M5_multiple-lstm.png <span style='color:#111;'> 160.12KB </span>","children":null,"spread":false},{"title":"LSTM3-var-tied.png <span style='color:#111;'> 68.38KB </span>","children":null,"spread":false},{"title":"M5_feature-rolling-mean.png <span style='color:#111;'> 133.10KB </span>","children":null,"spread":false},{"title":"LSTM2-notation.png <span style='color:#111;'> 24.12KB </span>","children":null,"spread":false},{"title":"Result_origin_roll.png <span style='color:#111;'> 19.62KB </span>","children":null,"spread":false},{"title":"Result_lar_heirarchi.png <span style='color:#111;'> 15.72KB </span>","children":null,"spread":false},{"title":"LSTM3-var-peepholes.png <span style='color:#111;'> 98.75KB </span>","children":null,"spread":false},{"title":"Result_lar_heirarchi_roll.png <span style='color:#111;'> 40.56KB </span>","children":null,"spread":false},{"title":"Result_origin.png <span style='color:#111;'> 16.94KB </span>","children":null,"spread":false},{"title":"LSTM3-gate.png <span style='color:#111;'> 5.10KB </span>","children":null,"spread":false},{"title":"LSTM3-var-GRU.png <span style='color:#111;'> 92.53KB </span>","children":null,"spread":false},{"title":"LSTM3-focus-o.png <span style='color:#111;'> 77.72KB </span>","children":null,"spread":false},{"title":"Result_den_heirarchi_roll.png <span style='color:#111;'> 15.00KB </span>","children":null,"spread":false},{"title":"cnn-archi.png <span style='color:#111;'> 200.13KB </span>","children":null,"spread":false},{"title":"RNN-longtermdependencies.png <span style='color:#111;'> 212.65KB </span>","children":null,"spread":false},{"title":"LSTM3-focus-f.png <span style='color:#111;'> 63.51KB </span>","children":null,"spread":false},{"title":"RNN-shorttermdepdencies.png <span style='color:#111;'> 203.23KB </span>","children":null,"spread":false},{"title":"LSTM3-chain.png <span style='color:#111;'> 224.30KB </span>","children":null,"spread":false},{"title":"RNN-unrolled.png <span style='color:#111;'> 91.99KB </span>","children":null,"spread":false},{"title":"LSTM3-focus-i.png <span style='color:#111;'> 77.64KB </span>","children":null,"spread":false}],"spread":false},{"title":"[baseline] jane-pytorch-lstm.ipynb <span style='color:#111;'> 55.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"mubarrat","children":[{"title":"jan21","children":[{"title":"basic lightgbm with input size reduction.ipynb <span style='color:#111;'> 19.32KB </span>","children":null,"spread":false},{"title":"Light GBM.pptx <span style='color:#111;'> 437.36KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明