ssvae:半监督文本分类的变体自动编码器的代码

上传者: 42181545 | 上传时间: 2022-06-09 15:45:56 | 文件大小: 485KB | 文件类型: ZIP
半监督文本分类的变体自动编码器 所有这些存储库都在标题为“用于半监督文本分类的可变自动编码器”的论文中使用。 列表: data:所有数据文件都保存在此目录中,包括数据,单词嵌入,pretrained_weights。 结果:保存结果模型的目录。 assistant_vae和avae_fixed:在VAE中使用辅助变量的模型,可以产生良好的结果。 它们的不同之处在于是否在生成中固定潜在变量。 SemiSample-S1是带有基于EMA基准的基于采样的优化器的模型 SemiSample-S2是带有VIMCO基线的基于采样的优化器的模型 笔记 该代码有点多余,因为最初的模型是使用辅助变量提出的,但是事实证明,如果没有辅助变量,它也可以很好地工作。 要运行此代码,您可能需要预处理的数据,可以通过给我发送电子邮件(pku.edu.cn上的wead_hsu)获得这些数据。 或者,您也可以使用

文件下载

资源详情

[{"title":"( 93 个子文件 485KB ) ssvae:半监督文本分类的变体自动编码器的代码","children":[{"title":"ssvae-master","children":[{"title":"SemiSample-S2","children":[{"title":"deep_model.py <span style='color:#111;'> 34.60KB </span>","children":null,"spread":false},{"title":"train_imdb.py <span style='color:#111;'> 10.10KB </span>","children":null,"spread":false},{"title":"train_imdb_sample.py <span style='color:#111;'> 10.15KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 9.87KB </span>","children":null,"spread":false},{"title":"layer","children":[{"title":"sample.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"sclstm.py <span style='color:#111;'> 27.73KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"meanlstm.py <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"sclstm2.py <span style='color:#111;'> 24.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 686B </span>","children":null,"spread":false},{"title":"webServers.xml <span style='color:#111;'> 595B </span>","children":null,"spread":false},{"title":"vcs.xml <span style='color:#111;'> 180B </span>","children":null,"spread":false},{"title":"deployment.xml <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 272B </span>","children":null,"spread":false},{"title":"SemiSample.iml <span style='color:#111;'> 573B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 58.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"train_ag_sample.py <span style='color:#111;'> 9.88KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 131B </span>","children":null,"spread":false},{"title":"readme","children":[{"title":"train with sample ver0.1.pdf <span style='color:#111;'> 283.55KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils","children":[{"title":"VariationalCost.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"helper_functions.py <span style='color:#111;'> 3.74KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true}],"spread":false},{"title":"sent-gen","children":[{"title":"deep_model.py <span style='color:#111;'> 22.31KB </span>","children":null,"spread":false},{"title":"pycharm_test.py <span style='color:#111;'> 3.94KB </span>","children":null,"spread":false},{"title":"sent_gen_generator.py <span style='color:#111;'> 4.28KB </span>","children":null,"spread":false},{"title":"sent_gen_with_y.py <span style='color:#111;'> 9.80KB </span>","children":null,"spread":false},{"title":"helper_functions.py <span style='color:#111;'> 9.04KB </span>","children":null,"spread":false},{"title":"sent_gen_naive.py <span style='color:#111;'> 9.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"auxiliary_vae","children":[{"title":"deep_model.py <span style='color:#111;'> 33.64KB </span>","children":null,"spread":false},{"title":"generate_data.py <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"deep_model_s.py <span style='color:#111;'> 32.49KB </span>","children":null,"spread":false},{"title":"imdb_old.py <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"layer","children":[{"title":"sample.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"sclstm.py <span style='color:#111;'> 28.33KB </span>","children":null,"spread":false},{"title":"variationalcost.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"mylstm.py <span style='color:#111;'> 14.20KB </span>","children":null,"spread":false},{"title":"meanlstm.py <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"imdb_new.py <span style='color:#111;'> 9.94KB </span>","children":null,"spread":false},{"title":"forward_data.py <span style='color:#111;'> 3.97KB </span>","children":null,"spread":false},{"title":"analysis","children":[{"title":"show_kl.py <span style='color:#111;'> 439B </span>","children":null,"spread":false},{"title":"cluster_analysis.py <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"show_auxiliary.py <span style='color:#111;'> 866B </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 25B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"word_dropout.py <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"helper_functions.py <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"data_process.py <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"avae_fixed","children":[{"title":"deep_model-2embddings.py <span style='color:#111;'> 34.59KB </span>","children":null,"spread":false},{"title":"deep_model.py <span style='color:#111;'> 34.51KB </span>","children":null,"spread":false},{"title":"deep_model_adgm.py <span style='color:#111;'> 32.37KB </span>","children":null,"spread":false},{"title":"generate_data.py <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"deep_model_s.py <span style='color:#111;'> 32.49KB </span>","children":null,"spread":false},{"title":"imdb_old.py <span style='color:#111;'> 9.96KB </span>","children":null,"spread":false},{"title":"deep_model-617.py <span style='color:#111;'> 34.16KB </span>","children":null,"spread":false},{"title":"layer","children":[{"title":"sample.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"sclstm.py <span style='color:#111;'> 28.33KB </span>","children":null,"spread":false},{"title":"variationalcost.py <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"mylstm.py <span style='color:#111;'> 14.20KB </span>","children":null,"spread":false},{"title":"meanlstm.py <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"imdb_new.py <span style='color:#111;'> 9.94KB </span>","children":null,"spread":false},{"title":"forward_data.py <span style='color:#111;'> 3.97KB </span>","children":null,"spread":false},{"title":"analysis","children":[{"title":"show_kl.py <span style='color:#111;'> 439B </span>","children":null,"spread":false},{"title":"cluster_analysis.py <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"show_auxiliary.py <span style='color:#111;'> 866B </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"word_dropout.py <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"helper_functions.py <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"data_process.py <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"lta","children":[{"title":"layer","children":[{"title":"selfatt.py <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"SemiSample-S1","children":[{"title":"models","children":[{"title":"deep_model.py <span style='color:#111;'> 26.75KB </span>","children":null,"spread":false},{"title":"deep_model_norm_constbaseline.py <span style='color:#111;'> 27.19KB </span>","children":null,"spread":false},{"title":"deep_model_norm_baseline.py <span style='color:#111;'> 27.27KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"deep_model_baseline.py <span style='color:#111;'> 27.14KB </span>","children":null,"spread":false},{"title":"deep_model_constbaseline.py <span style='color:#111;'> 27.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"train.py <span style='color:#111;'> 10.02KB </span>","children":null,"spread":false},{"title":"layer","children":[{"title":"sample.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"sclstm.py <span style='color:#111;'> 28.36KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"meanlstm.py <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"VariationalCost.py <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"helper_functions.py <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":".gitignore <span style='color:#111;'> 6B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明