使用医疗保健数据预测抑郁症:使用CDC NHANES网站上的医疗数据使用机器学习预测抑郁症的项目。 使用Streamlit创建了一个供用户浏览此项目中数据的配套仪表板。 使用Jupyter Notebook用Python编写的主要项目流程分析和Visual Studio代码,用于编写自定义功能和创建仪表板

上传者: 42181545 | 上传时间: 2022-04-11 19:56:07 | 文件大小: 71.88MB | 文件类型: ZIP
使用卫生保健数据预测抑郁 作者:Vivienne DiFrancesco 可以在找到用于探索该项目中使用的数据的配套仪表板 该存储库的内容是对使用机器学习模型来预测使用医疗保健数据的人的抑郁症的分析。 希望可以使工作更易于访问和复制,从而进行详细的分析。 储存库结构 README.md:此项目审阅者的顶级自述文件 first_notebook.ipynb:从数据清理阶段开始在jupyter笔记本中进行分析的叙述性文档 second_notebook.ipynb:在项目的探索阶段清理数据之后开始的叙述性文档的延续 PredictingDepressionSlides.pdf:项目演示幻灯片的PDF版本 project_functions文件夹:包含编写用于first_notebook和second_notebook的自定义函数 仪表板文件夹:包含用于创建此项目的配套仪表板的文件的文件夹 抽

文件下载

资源详情

[{"title":"( 39 个子文件 71.88MB ) 使用医疗保健数据预测抑郁症:使用CDC NHANES网站上的医疗数据使用机器学习预测抑郁症的项目。 使用Streamlit创建了一个供用户浏览此项目中数据的配套仪表板。 使用Jupyter Notebook用Python编写的主要项目流程分析和Visual Studio代码,用于编写自定义功能和创建仪表板","children":[{"title":"Predicting-Depression-Using-Health-Care-Data-main","children":[{"title":".gitignore <span style='color:#111;'> 66B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 12.88KB </span>","children":null,"spread":false},{"title":"Dashboard","children":[{"title":"depression_app.py <span style='color:#111;'> 23.24KB </span>","children":null,"spread":false},{"title":"app_cleaning.ipynb <span style='color:#111;'> 352.23KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"plotly_figures-checkpoint.ipynb <span style='color:#111;'> 352.52KB </span>","children":null,"spread":false},{"title":"app_cleaning-checkpoint.ipynb <span style='color:#111;'> 352.23KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"project_functions","children":[{"title":"__pycache__","children":[{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 12.21KB </span>","children":null,"spread":false},{"title":"custom_functions.cpython-36.pyc <span style='color:#111;'> 190B </span>","children":null,"spread":false},{"title":"oi.cpython-36.pyc <span style='color:#111;'> 417B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 13.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"scratch","children":[{"title":"first_notebook_copy.ipynb <span style='color:#111;'> 1.94MB </span>","children":null,"spread":false},{"title":"main_notebook.ipynb <span style='color:#111;'> 18.36MB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"first_notebook_copy-checkpoint.ipynb <span style='color:#111;'> 1.77MB </span>","children":null,"spread":false},{"title":"first_notebook-Copy1-checkpoint.ipynb <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"CSVFiles","children":[{"title":"XTrainResample.csv <span style='color:#111;'> 39.14MB </span>","children":null,"spread":false},{"title":"yTrainResample.csv <span style='color:#111;'> 147.53KB </span>","children":null,"spread":false},{"title":"FullData.csv <span style='color:#111;'> 26.52MB </span>","children":null,"spread":false},{"title":"XTestFinal.csv <span style='color:#111;'> 13.89MB </span>","children":null,"spread":false},{"title":"yTest.csv <span style='color:#111;'> 56.99KB </span>","children":null,"spread":false},{"title":"XTrainFinal.csv <span style='color:#111;'> 55.54MB </span>","children":null,"spread":false},{"title":"yTrain.csv <span style='color:#111;'> 227.85KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitattributes <span style='color:#111;'> 66B </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"first_notebook-checkpoint.ipynb <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false},{"title":"old_notebook-checkpoint.ipynb <span style='color:#111;'> 3.78MB </span>","children":null,"spread":false},{"title":"plotly_figures-checkpoint.ipynb <span style='color:#111;'> 352.53KB </span>","children":null,"spread":false},{"title":"Covid-checkpoint.ipynb <span style='color:#111;'> 16.86KB </span>","children":null,"spread":false},{"title":"second_notebook-checkpoint.ipynb <span style='color:#111;'> 16.32MB </span>","children":null,"spread":false},{"title":"first_notebook-Copy1-checkpoint.ipynb <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false},{"title":"main_notebook-checkpoint.ipynb <span style='color:#111;'> 17.97MB </span>","children":null,"spread":false},{"title":"main_notebook1-checkpoint.ipynb <span style='color:#111;'> 231.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"StreamlitData.csv <span style='color:#111;'> 25.39MB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 47B </span>","children":null,"spread":false},{"title":"Images","children":[{"title":"Most Important Features.png <span style='color:#111;'> 54.15KB </span>","children":null,"spread":false},{"title":"Tuned Logistic Regression.png <span style='color:#111;'> 27.15KB </span>","children":null,"spread":false},{"title":"Depression Chart.png <span style='color:#111;'> 92.31KB </span>","children":null,"spread":false},{"title":"Depression.jpg <span style='color:#111;'> 141.65KB </span>","children":null,"spread":false}],"spread":true},{"title":"second_notebook.ipynb <span style='color:#111;'> 16.32MB </span>","children":null,"spread":false},{"title":"first_notebook.ipynb <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false},{"title":"PredictingDepressionSlides.pdf <span style='color:#111;'> 1.29MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明