[{"title":"( 36 个子文件 44.28MB ) pfld_106_face_landmarks:106点人脸关键点检测的PFLD算法实现-源码","children":[{"title":"pfld_106_face_landmarks-master","children":[{"title":".gitignore <span style='color:#111;'> 185B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 118B </span>","children":null,"spread":false},{"title":"output","children":[{"title":"v2.onnx <span style='color:#111;'> 4.81MB </span>","children":null,"spread":false},{"title":"result_1.jpg <span style='color:#111;'> 187.58KB </span>","children":null,"spread":false},{"title":"v3.onnx <span style='color:#111;'> 5.51MB </span>","children":null,"spread":false},{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"pfld.onnx <span style='color:#111;'> 5.60MB </span>","children":null,"spread":false},{"title":"result_2.jpg <span style='color:#111;'> 178.61KB </span>","children":null,"spread":false},{"title":"result_3.jpg <span style='color:#111;'> 336.46KB </span>","children":null,"spread":false},{"title":"lite.onnx <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"106人脸标注规则.jpg <span style='color:#111;'> 407.66KB </span>","children":null,"spread":false},{"title":"bbox_landmark.txt <span style='color:#111;'> 22.02MB </span>","children":null,"spread":false},{"title":"prepare.py <span style='color:#111;'> 10.59KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 282B </span>","children":null,"spread":false}],"spread":true},{"title":"dataset","children":[{"title":"datasets.py <span style='color:#111;'> 5.88KB </span>","children":null,"spread":false}],"spread":true},{"title":"onnxrt_inference.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"ghost_pfld.py <span style='color:#111;'> 8.74KB </span>","children":null,"spread":false},{"title":"pfld.py <span style='color:#111;'> 5.55KB </span>","children":null,"spread":false},{"title":"mobilev3_pfld.py <span style='color:#111;'> 7.22KB </span>","children":null,"spread":false},{"title":"lite.py <span style='color:#111;'> 5.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"tools","children":[{"title":"onnx2ncnn <span style='color:#111;'> 291.34KB </span>","children":null,"spread":false},{"title":"ncnnoptimize <span style='color:#111;'> 1.62MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"mtcnn","children":[{"title":"detector.py <span style='color:#111;'> 12.54KB </span>","children":null,"spread":false},{"title":"rnet.npy <span style='color:#111;'> 590.48KB </span>","children":null,"spread":false},{"title":"onet.npy <span style='color:#111;'> 2.24MB </span>","children":null,"spread":false},{"title":"pnet.npy <span style='color:#111;'> 40.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 5.41KB </span>","children":null,"spread":false},{"title":"pytorch2onnx.py <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"pfld","children":[{"title":"utils.py <span style='color:#111;'> 4.47KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false}],"spread":true},{"title":"checkpoint","children":[{"title":"lite.pth <span style='color:#111;'> 2.21MB </span>","children":null,"spread":false},{"title":"lite","children":[{"title":"lite.pth <span style='color:#111;'> 2.21MB </span>","children":null,"spread":false}],"spread":false},{"title":"v3","children":[{"title":"v3.pth <span style='color:#111;'> 6.66MB </span>","children":null,"spread":false}],"spread":false},{"title":"v2","children":[{"title":"v2.pth <span style='color:#111;'> 6.73MB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"train.py <span style='color:#111;'> 10.61KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]