pfld_106_face_landmarks:106点人脸关键点检测的PFLD算法实现-源码

上传者: 42181545 | 上传时间: 2021-09-05 14:20:20 | 文件大小: 44.28MB | 文件类型: ZIP
pfld_106_face_landmarks 106点人脸关键点检测的PFLD算法实现 :smiling_face_with_smiling_eyes: 转换后的ONNX模型 预训练权重 性能测试 update GhostNet update MobileNetV3 Backbone param MACC nme Link ONNX MobileNetV2 1.26M 393M 4.96% MobileNetV3 1.44M 201.8M 4.40% MobileNetV3_Small 0.22M 13M 6.22% 测试电脑MacBook 2017 13-Inch CPU i5-3.1GHz (single core) backbone FPS(onnxruntime cpu) Time(single face) v2.onnx 60.9 16ms V3.onnx 62.7 15.9ms lite.onnx 255 3.9ms R

文件下载

资源详情

[{"title":"( 36 个子文件 44.28MB ) pfld_106_face_landmarks:106点人脸关键点检测的PFLD算法实现-源码","children":[{"title":"pfld_106_face_landmarks-master","children":[{"title":".gitignore <span style='color:#111;'> 185B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 118B </span>","children":null,"spread":false},{"title":"output","children":[{"title":"v2.onnx <span style='color:#111;'> 4.81MB </span>","children":null,"spread":false},{"title":"result_1.jpg <span style='color:#111;'> 187.58KB </span>","children":null,"spread":false},{"title":"v3.onnx <span style='color:#111;'> 5.51MB </span>","children":null,"spread":false},{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"pfld.onnx <span style='color:#111;'> 5.60MB </span>","children":null,"spread":false},{"title":"result_2.jpg <span style='color:#111;'> 178.61KB </span>","children":null,"spread":false},{"title":"result_3.jpg <span style='color:#111;'> 336.46KB </span>","children":null,"spread":false},{"title":"lite.onnx <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"106人脸标注规则.jpg <span style='color:#111;'> 407.66KB </span>","children":null,"spread":false},{"title":"bbox_landmark.txt <span style='color:#111;'> 22.02MB </span>","children":null,"spread":false},{"title":"prepare.py <span style='color:#111;'> 10.59KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 282B </span>","children":null,"spread":false}],"spread":true},{"title":"dataset","children":[{"title":"datasets.py <span style='color:#111;'> 5.88KB </span>","children":null,"spread":false}],"spread":true},{"title":"onnxrt_inference.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"ghost_pfld.py <span style='color:#111;'> 8.74KB </span>","children":null,"spread":false},{"title":"pfld.py <span style='color:#111;'> 5.55KB </span>","children":null,"spread":false},{"title":"mobilev3_pfld.py <span style='color:#111;'> 7.22KB </span>","children":null,"spread":false},{"title":"lite.py <span style='color:#111;'> 5.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"tools","children":[{"title":"onnx2ncnn <span style='color:#111;'> 291.34KB </span>","children":null,"spread":false},{"title":"ncnnoptimize <span style='color:#111;'> 1.62MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"mtcnn","children":[{"title":"detector.py <span style='color:#111;'> 12.54KB </span>","children":null,"spread":false},{"title":"rnet.npy <span style='color:#111;'> 590.48KB </span>","children":null,"spread":false},{"title":"onet.npy <span style='color:#111;'> 2.24MB </span>","children":null,"spread":false},{"title":"pnet.npy <span style='color:#111;'> 40.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 5.41KB </span>","children":null,"spread":false},{"title":"pytorch2onnx.py <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"pfld","children":[{"title":"utils.py <span style='color:#111;'> 4.47KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false}],"spread":true},{"title":"checkpoint","children":[{"title":"lite.pth <span style='color:#111;'> 2.21MB </span>","children":null,"spread":false},{"title":"lite","children":[{"title":"lite.pth <span style='color:#111;'> 2.21MB </span>","children":null,"spread":false}],"spread":false},{"title":"v3","children":[{"title":"v3.pth <span style='color:#111;'> 6.66MB </span>","children":null,"spread":false}],"spread":false},{"title":"v2","children":[{"title":"v2.pth <span style='color:#111;'> 6.73MB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"train.py <span style='color:#111;'> 10.61KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明