双向LSTM-CNN的命名实体识别:双向LSTM-CNN的命名实体识别-源码

上传者: 42176612 | 上传时间: 2021-09-30 20:26:03 | 文件大小: 1.05MB | 文件类型: -
更好的NER 具有双向LSTM-CNN的命名实体识别 命名实体识别的双向LSTM_CNN的keras实现。 原始论文可以在找到 该实现与原始论文的不同之处在于: 不考虑词典 使用存储桶可加快培训速度 使用nadam优化程序代替SGD 结果 该模型在约70个时期内产生90.9%的测试F1得分。 对于给定的体系结构,本文产生的结果是91.14体系结构(带有emb + caps的BILSTM-CNN) 数据集 conll-2003 论文网络模型 使用Keras构建网络模型 运行脚本 python3 nn.py 要求 0) nltk 1) numpy 2) Keras==2.1.2 3) T

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明